Open GEODA

GIS Seminar Series
2012
Division of Spatial Information Science
University of Tsukuba
H.Malinda Siriwardana

Introduction

- The GeoDa Center for Geospatial Analysis and Computation
 - develops state-of-the-art methods for geospatial analysis,
 - geovisualization,
 - geosimulation
 - spatial process modeling
 - implements them through open source software tools
 - applies them to policy-relevant research in the social and environmental sciences
 - disseminates them through training and support to a growing worldwide community
- The GeoDa Center succeeds the Spatial Analysis Laboratory (SAL) which was founded by the School of Geographical Sciences and Urban Planning Director Luc Anselin
- https://geodacenter.asu.edu https://geodacenter.asu.edu/software/documentation

2

Product List Introduction to Spatial Data Analysis: EDA, ESDA & ML Spatial OpenGeoDa Regression (List of features) Open Source Library for Spatial Analysis: Weights, computational PVSAL geometry, ESDA, spatial econometrics, clustering and spatial Spatial econometrics (lag and error, endogenous variables, HAC, Cross-platform, code in GeoDaSpace (Alpha) robust standard errors) PySAL 1.3 Cross-platform, code in GeoDaNet (Alpha) Spatial point pattern analysis on networks Spatial weights, spatial econometrics, geostatistics, point pattern analysis

Design and Functionality

In broad terms, the functionality can be classified into six categories:

- Spatial data manipulation and utilities:
- data input, output, and conversion
- Data transformation:
 - variable transformations and creation of new variables
- Mapping:
 - choropleth maps, cartogram and map animation
- · EDA: statistical graphics
- Spatial autocorrelation:
 - global and local spatial autocorrelation statistics, with inference and visualization
- Spatial regression:
 - diagnostics and maximum likelihood estimation of linear spatial regression models

GeoDa Functionality Overview

Spatial Data

- Data input from shape file (point, polygon)
- Data input from text (to point or polygon shape)
- Data output to text (data or shape file)
- Create grid polygon shape file from text input
- Centroid computation
- Thiessen polygons

5

GeoDa Functionality Overview

Data Transformation

- Variable transformation (log, exp, etc.)
- Queries, dummy variables (regime variables)
- Variable algebra (addition, multiplication, etc.)
- Spatial lag variable construction
- Rate calculation and rate smoothing
- Data table join

6

GeoDa Functionality Overview

Mapping

- Generic quantile choropleth map
- Standard deviational map
- Percentile map
- Outlier map (box map)
- Circular cartogram
- Map movie
- Conditional maps
- Smoothed rate map (EB, spatial smoother)
- Excess rate map (standardized mortality rate, SMR)

GeoDa Functionality Overview

EDA histogram

- Box plot
- Scatter plot
- Parallel coordinate plot
- Three-dimensional scatter plot
- Conditional plot (histogram, box plot, scatter plot)

GeoDa Functionality Overview

Spatial Autocorrelation spatial weights creation (rook, queen, distance, k-nearest)

- Higher order spatial weights
- Spatial weights characteristics (connectedness histogram)
- Moran scatterplot with inference
- Bivariate Moran scatterplot with inference
- Moran scatterplot for rates (EB standardization)
- Local Moran significance map
- Local Moran cluster map
- Bivariate Local Moran
- Local Moran for rates (EB standardization)

9

GeoDa Functionality Overview

Spatial Regression

- OLS with diagnostics (e.g., LM test, Moran's I)
- Maximum Likelihood spatial lag model
- Maximum Likelihood spatial error model
- Predicted value map
- Residual map

10

Getting Started with GeoDa

- Objectives
- Starting a Project
- User Interface
- Practice

Getting Started with GeoDa

Objectives

- This illustrates how to get started with GeoDa, and the basic structure of its user interface
 - Open and Close a project
 - Load a shape file with the proper indicator (Key)

12

User Interface

• 9 Menu Items

13

Getting Started with GeoDa

- In GeoDa, only shape files can be read into a project at this point
- However, even if you don't have your data in the form of a shape file, you may be able to use the included spatial data manipulation tools to create one

14

Starting a Project

- Start GeoDa by
 - Double-clicking on its icon on the desktop
 - or run the GeoDa from the file manager
- A welcome screen will appear
- In the File Menu,
 - select Open Project
 - or click on the Open Project toolbar button
- After opening the project, the familiar Windows dialog requests the file name of a shape file and the Key variable
- The Key variable uniquely identifies each observation
- It is typically an integer value like a FIPS (Federal Information Processing Standard) code for counties, or a census tract number

15

Starting a Project

- Open / Close GeoDa
- Load a shape file with the proper indicator (Key)

Creating a Point Shape File

- Format a text file for input into GeoDa
- Create a point shape file from a text input file or dbf data file

17

Creating a Point Shape File

- Point Input File Format
 - The format for the input file to create a point shape file is very straightforward
 - The minimum contents of the input file are three variables: a unique identifier (integer value), the xcoordinate and the y-coordinate In a dbf format file, there are no further requirements
 - . Note that when latitude and longitude are included, the x-coordinate is the longitude and the y-coordinate the latitude

18

Creating a Point Shape File

- Point Input File Format
 - When the input is a text file, the three required variables must be entered in a separate row for each observation, and separated by a comma
 - In addition to the identifier and coordinates, the input file can also contain other variables
 - . (The input file must also contain two header lines
 - · The first includes the number of observations and the number of variables
 - The second a list of the variable names, Again, all items are separated by a comma)

Point Input File Format

Lets use - OZ9799 sample data set in the text file
 "oz9799.txt" (> renamed as 029799.csv)

Creating a Point Shape File

 This file includes monthly measures on ozone pollution taken at 30 monitoring stations in the Los Angeles basin

Creating a Point Shape File

• Point Input File Format

21

Creating a Polygon Shape File

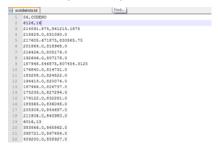
- Create a polygon shape file from a text input file with the boundary coordinates
- Create a polygon shape file for a regular grid layout
- Join a data table to a shape file base map

22

Creating a Polygon Shape File

- Create a polygon shape file from a text input file with the boundary coordinates
- Create a polygon shape file for a regular grid layout
- Join a data table to a shape file base map

Creating a Polygon Shape File


- Boundary File Input Format
 - GeoDa currently supports one input file format for polygon boundary coordinates
 - While this is a limitation, in practice it is typically fairly straightforward to convert one format to another
 - The supported format consists of a header line containing the number of polygons and a unique polygon identifier, separated by a comma
 - For each polygon, its identifier and the number of points is listed, followed by the x and y coordinate pairs for each point (comma separated)

24

Creating a Polygon Shape File

• Boundary File Input Format - scotdistricts.txt

Creating a Polygon Shape File

- In contrast to the procedure followed for point shape files
 - a two-step approach is taken here
 - First, a base map shape file is created
 - This file does not contain any data other than polygon identifiers, area and perimeter
 - In the second step, a data table must be joined to this shape file to add the variables of interest

26

Creating a Polygon Shape File

Creating a Polygon Shape File for the Base Map

Creating a Polygon Shape File

- Joining a Data Table to the Base Map
 - In order to create a shape file for the Scottish districts that also contains the lip cancer data, a data table (dbf format) must be joined to the table for the base map
 - This is invoked using the Table menu with the Join Tables command

Creating a Polygon Shape File

• Joining a Data Table to the Base Map

29

Creating a Choropleth Map

- Make a simple choropleth map
- Select items in the map
- Change the selection tool

30

Creating a Choropleth Map

- Quantile Map
 - The SIDS data set in the sample collection is taken from Noel Cressie's (1993) Statistics for Spatial Data (Cressie 1993, pp. 386–389)
 - It contains variables for the count of SIDS deaths for 100
 North Carolina counties in two time periods, here labeled
 SID74 and SID79
 - In addition, there are the count of births in each county (BIR74, BIR79) and a subset of this, the count of non-white births (NWBIR74, NWBIR79)

1

Creating a Choropleth Map

- Quantile Map
 - Consider constructing two quantile maps to compare the spatial distribution of non-white births and SIDS deaths in 74 (NWBIR74 and SID74)
 - Click on the base map to make it active
 - In the Map Menu, select Quantile
 - A dialog will appear, allowing the selection of the variable to be mapped

Creating a Choropleth Map

- Quantile Map NWBIR74 and SID74
 - In the Variables Settings dialog, select NWBIR74 and click OK
 - After you choose the variable, a second dialog will ask for the number of categories in the quantile map: for now, keep the default value of 4 (quartile map) and click OK
 - A quartile map (four categories) will appear
 - Next, create a quartile map (4 categories) for the variable SID74

33

Creating a Choropleth Map

Quantile Map

- NWBIR74 and SID74

34

Creating a Choropleth Map

- Selecting and Linking Observations in the Map
 - The concept of dynamic maps implies that there are ways to select specific locations and to link the selection between maps
 - GeoDa includes several selection shapes, such as point, rectangle, polygon, circle and line

Creating a Choropleth Map

• Selecting and Linking Observations in the Map

Source

- https://geodacenter.asu.edu
- https://geodacenter.asu.edu/software/documentation

Thank You!!!