Minitab Statistical Software Introduction

Wang Ruci M1

Division of Spatial Information Science Graduate School of Life and Environmental Sciences University of Tsukuba 2015.12.05

Getting Started with Minitab 17

Introduction

 Minitab is a statistics software that often combined with the implementation of Six sigma, CMMI (Capability Maturity Model Integration) and other statistics-based process improvement methods.

The relationship between Minitab and 6 Sigma

 In the 1980s, Motorola begin within the company to introduce 6 sigma, and using Minitab statistical software to do the maximum limit development.

 The MAIC (Measure, Analyze, Improve and Control)step in 6 sigma, a lot of analyze and statistic can finish in Minitab software in a simple way.

Multi language version

About download

Minitab 🄊

PRODUCTS 🔻 SERVICES 🔻 SUPPORT ACADEMIC BLOG MY ACCOUNT

.đi.

Statistical Analysis

Process Improvement

E-Learning

About download

Power Couple.

The software and the knowledge you need to analyze your data.

Our e-learning course is ideal for Minitab users, whether you're new to statistics or just need a refresher.

ATTEND THE FREE WEBINAR

Minitab user interface

Toolbar introduction

Function

- Computation function
- ➤ Calculator function
- ➢ Generating data function
- Probability distribution function
- ➤ Matrix operation

Function

- Data analysis function
- ➤ Statistic
- ➢ Regression analysis
- ➤ Variance analysis
- Multivariable analysis
- ➢ Non-parametric estimation

Function

• Graphic analysis

Example 1

🖽 Wor	ksheet 1 ***							3
+	C2	C3	C4	C5	C6	C7	C8	
	X2	X3	X4	X5				
1	9.872	10.024	10.128	10.120				
2	10.097	10.087	9.924	9.821				
3	9.983	10.148	9.956	10.090				
4	9.971	9.917	9.930	9.880				
5	10.080	10.106	10.116	10.045				
6	9.882	9.924	9.864	9.873				
7	10.024	9.962	9.933	9.991				
8	10.096	10.062	10.067	10.049				
9	10.067	9.936	10.038	10.210				
10	9.826	9.759	10.009	9.978				
11								
12								
13								
14								
15								-
•							E.	

Input data and analysis

• Select : Stat—Quality Tools—Capability Analysis (Normal)

Minitab - Untitled											
Eile E	<u>E</u> dit D <u>a</u> ta 	Calc Stat	<u>Graph</u> E Basic Statisti Regression	<u>ditor T</u> ools ics •	<u>w</u>	<u>V</u> indow <u>H</u> elp Assista <u>n</u> t ◎ ② 圖 : अ ि ि 0 2 1 10 11 → × へ : ⊳ T □ ○		•	□ि⊑ □□□]	2	
Sessi	ion		DOE Control Cha	rts 🕨				_			
Welcor	me to Mini	L/29,	Quality Too Reliability/S <u>M</u> ultivariate Time <u>S</u> eries	ls urvival	× ≤ * *	 <u>R</u>un Chart <u>Pareto Chart</u> <u>C</u>ause-and-Effect Individual Distribution Identification 					
Worksheet 1 *** <u>Nonparametrics</u>			Johnson Transformation								
+	C1 X1	C X	Equivalence Tests			Capability Sixpack	+	•	Normal		
1 2	9.970 9.932	9.872 10.970	- 10.240 10.870	10.128 9.924	Л	Tolera <u>n</u> ce Intervals Gage Study	,		Determine how well your process output meets customer requirements when your data are reasonably		
3	9.989 9.915	9.983 9.971	10.148 9.917	9.956 9.930		Create Attribute Agreement Analysis Worksheet Attribute Agreement Analysis	i		Binomial		
6 7	9.774 10.118	9.882	9.924 9.962	9.864	2	Acceptance Sampling by A <u>t</u> tributes Acceptance Sampling by <u>V</u> ariables	,		Poisson		
8 9	10.154 10.149	10.096 10.670	10.062 9.936	10.067 10.038	ite da	Multi-Vari Chart Symmetry Plot					
10 11 12	9.716	9.826	9.759	10.009		3.370		1			

Input option

Capability Analysis (No	ormal Distribution)		x
C1 X1 C2 X2 C3 X3 C4 X4 C5 X5	Data are arranged as C Single column: Subgroup size: (use a constant or an ID col Subgroups across rows of: x1-x5	umn)	Transform Estimate Options Storage
	Upper spec:	10.3	Boundary
	Historical mean:		(optional)
	Historical standard deviation:		(optional) OK
Help			Cancel

Output result

Example 2 Multiple Linear Regression

演習 7.4

下の表は,25から34歳の健康な女性の被験者から得た,体脂肪量と,その説明変数と して上腕三頭筋での皮下脂肪量,太股周囲,中腕周囲のデータである (Neter et al., 1990, p.271).

番号	皮下脂肪量	太股周囲	中腕周囲	体脂肪量、	
	x_{i1}	xi2	$\bigwedge x_{i3}$	Wi	
subcutaneo us fat mass	19.5 circumference	43.1 of leg .8	9.1	11.9 22.8	Somatic fat
		ci	rcumferend	ce of arm	volume
5	19.1	42.			
6	25.6	53.9	23.7	21.7	
7	31.4	58.5	27.6	27.1	
8	27.9	52.1	30.6	25.4	
9	22.1	49.9	23.2	21.3	
10	25.5	53.5	24.8	19.3	
11	31.1	56.6	30.0	25.4	
12	30.4	56.7	28.3	27.2	
13	18.7	46.5	23.0	11.7	
14	19.7	44.2	28.6	17.8	
15	14.6	42.7	21.3	12.8	
16	29.5	54.4	30.1	23.9	
17	27.7	55.3	25.7	22.6	
18	30.2	58.6	24.6	25.4	
19	22.7	48.2	27.1	14.8	
20	25.2	51.0	27.5	21.1	

Input data

Worksheet 1 ***							
+	C1	C2	C3	C4	C5 🔺		
	Y	X1	X2	X3			
1	11.9	19.5	43.1	29.1			
2	22.8	24.7	49.8	28.2			
3	18.7	30.7	51.9	37.0			
4	20.1	29.8	54.3	31.1			
5	12.9	19.1	42.2	30.9			
6	21.7	25.6	53.9	23.7			
7	27.1	31.4	58.5	27.6			
8	25.4	27.9	52.1	30.6			
9	21.3	22.1	49.9	23.2			
10	19.3	25.5	53.5	24.8			
11	25.4	31.1	56.6	30.0			
12	27.2	30.4	56.7	28.3			
13	11.7	18.7	46.5	23.0			
14	17.8	19.7	44.2	28.6			
15	12.8	14.6	42.7	21.3			
16	23.9	29.5	54.4	30.1			
17	22.6	27.7	55.3	25.7			
18	25.4	30.2	58.6	24.6			
19	14.8	22.7	48.2	27.1			
20	21.1	25.2	51.0	27.5			
21					E 4		

- Observe
- Conjecture
- Make a trend graph

Graph

Straight line relationship

Multiple Linear Regression

Result

Session 📃 🗆	8
Regression Analysis: Y versus X1, X2, X3	^
Analysis of Variance	
Source DF Adj SS Adj MS F-Value P-Value Regression 3 396.985 132.328 21.52 0.000 X1 1 12.705 12.705 2.07 0.170 X2 1 7.529 7.529 1.22 0.285 X3 1 11.546 11.546 1.88 0.190 Error 16 98.405 6.150 100 Total 19 495.390 100	
Model Summary S R-sq R-sq(adj) R-sq(pred) 2.47998 80.14% 76.41% 67.55%	
Coefficients Term Coef SE Coef F-Value VIF Constant 117.1 99.8 1.17 0.258 VIF X1 4.33 3.02 1.44 0.170 708.84 X2 -2.86 2.58 -1.11 0.285 564.34 X3 -2.19 1.60 -1.37 0.190 104.61	
Regression Equation Y = 117.1 + 4.33 X1 - 2.86 X2 - 2.19 X3	

Example 3

	A	В	С	D	E
1	単価	都心への距離	西安駅への距離	最寄の駅への距離	湖・河への距離
2	p	DC	DSX	DS	DR
3	15000	3696. 225	3651.184	3176.661	1058, 783
4	13500	3317.964	5420.036	1355, 202	1361. 400
5	10000	3477.717	5644.176	5795. 306	910. 277
6	9200	1861.331	3652.733	6430.258	2118, 246
7	8300	2625.098	4771.291	5702.002	1442. 394
8	8000	8641.163	7031.109	5749.564	1569, 389
9	8000	8376. 362	9262.884	6936. 573	59, 631
10	8000	2043.691	3902.764	6541.992	937.043
11	7600	2502.974	4656.049	6922.689	1494. 375
12	7500	3390.111	3283. 824	6623.809	432. 308
13	7500	3827.049	4408. 196	5876.849	33, 132
14	7300	5479.409	6895.845	5788.674	781. 508
15	7200	6577. 199	8830.867	7025.689	498.054
16	7200	4573.061	6317.351	5876.754	1553, 855
17	7200	2819.377	4444. 599	6387.785	646. 413
18	7000	4612.474	4898.263	7023.031	1266. 340
19	7000	5662, 153	5746. 182	15733. 240	594.650
20	6900	2050. 840	3905. 942	5735. 519	327.345
21	6800	4391.769	5894.358	3486, 596	1777, 159
22	6800	4687.955	5073.837	1629.170	580. 376
23	6800	9892.944	10727.653	1783. 404	1392.083
24	6700	2866.634	3140. 405	505. 384	2105.712
25	6700	6628.695	8205.092	1564. 426	2798.097
26	6600	5051.707	5075. 783	2097.639	116, 653
27	6500	3606. 377	3942.086	1473.440	1055, 676
28	6500	4123, 435	5080. 724	633, 551	876. 520
29	6400	10896, 189	11757. 555	2025.096	2072. 591
30	6300	12320. 176	13040. 951	1044. 569	1401. 574
31	6300	8114.362	9381.890	737.462	1452.124
32	6000	9399. 406	10645, 290	2027.774	96, 767
33	5980	9923.037	10746. 473	1777. 240	714.888
34	5800	8917.927	10188.074	1303.850	1157.744
35	5600	5843. 423	6357.170	1181.583	483. 170
36	5400	10590. 086	11396, 153	193. 082	2160. 847
37	5200	5048.922	5118, 843	924. 531	1094. 841
38	5000	9434_010	10365_045	813 996	2536 960

Graph

Result

Session		Session	
1	~		*
Pegression Applysic: Viversus X1, X2, X3, X4		Regression Equation	
Regression Analysis. T versus A1, A2, A3, A4			
Analysis of Variance		Y = 9363 - 0.7333 X1 + 0.4977 X2 - 0.077 X3 + 0.171 X4	
Source DF Adj SS Adj MS F-Value P-Value Regression 4 944625780 236156445 25.96 0.000		Fits and Diagnostics for Unusual Observations	
X1 1 573985348 573985346 63.09 0.000 X2 1 252625472 252625472 27 77 0.000		Obs Y Fit Resid Std Resid	
X3 1 5353760 5353760 0.59 0.444		1 15000 8405 6595 2.20 R	
X4 1 14040689 14040689 1.54 0.215		17 7000 6955 45 0.02 X	
Error 373 3393652412 9098264		72 24000 9372 14628 4.87 R	
Total 377 4338278192		80 7500 8940 -1440 -0.49 X	
		83 16000 9558 6442 2.15 R	
Model Summary		84 16000 9086 6914 2.32 R	
S R-sq R-sq(adj) R-sq(pred) 3016.33 21.77% 20.94% 20.15%		179 25000 10579 14421 4.63 R 180 16000 9858 6142 2.05 R 225 13000 6748 6252 2.08 R 240 30000 9076 20924 6.97 R 241 25000 8566 16434 5.46 R	
Coefficients		242 23000 8042 14958 4.98 R	
		243 20000 8049 11951 3.98 R 244 18500 8588 9912 3.30 P	
Term Coef SE Coef T-Value P-Value VIF		244 18360 8368 9912 3.36 R 245 17000 8370 8630 2.87 R	
Constant 9363 428 21.89 0.000		246 15000 8792 6208 2.06 R	
X1 -0.7333 0.0923 -7.94 0.000 8.41 X2 0.4977 0.0945 5.27 0.000 8.26		276 20000 9037 10963 3.65 R	
X3 -0.077 0.101 -0.77 0.444 1.08		319 15000 7733 7267 2.42 R	
X4 0.171 0.137 1.24 0.215 1.03		368 3800 4310 -510 -0.18 X	
		373 3600 491 3109 1.07 X	
Degragation Equation			
Regression Equation		R Large residual	
		X Unusual X	-
	r		·

Thanks for your attention.

Wang Ruci 2015 12 03