Land Use/Cover Changes & Modeling Urban Expansion of Nairobi City

THE R. P. LEWIS CO., LANSING MICH.

Introduction
 Objectives
 Land use/cover changes
 Modeling with Cellular Automata
 Conclusions

Introduction

Urban land use/cover types and distribution necessary for monitoring growth and evaluation of urban policies and development strategies.

Because of rapid urban growth, models are needed to provide understanding of the consequences of planning policies.

African Cities

- Experiencing most rapid spatial expansion of all regions (Cohen, 2004).
- Urban growth sprawl coupled with explosive population growth
- Inadequate infrastructure and basic amenities
- Consequences unsuitable land uses, traffic congestion, environmental and social effects

 To analyze the dynamics of land use/cover changes

 To model the urban growth and simulate urban expansion using Cellular Automata and GIS

Study Area - Nairobi

Nairobi - Geology

Soils

Vegetation

Population

Constraints

Analysis of Land Use/cover changes

- ✓ Use of multi-temporal Landsat images
 ☑ (resampling)
- Change detection to map spatial dynamics of land use/cover.
- Physical and socioeconomic data for factors influencing land use/cover changes.

Land Use/Cover in Nairobi

Trends in Land Use/Cover

Statistics in Land Use/Cover Changes

Year	197	6	198	8	2000	
Land Use/cover	Area (km²)	%	Area (Km²)	%	Area (Km2)	%
Urban	13.99	1.9	41.18	5.8	61.23	8.6
Agriculture	49.83	6.9	57.83	8.1	87.78	12.3
Forests	100.15	14.0	29.09	4.1	23.56	3.3
Bushlands	154.48	22.3	101.49	14.2	95.98	13.5
Mixed rangelands	357.32	50.1	340.62	47.7	237.63	33.3
Shrub/Brush range	25.22	3.5	64.19	8.9	170.78	23.9
Open/Transitional	6.92	0.9	77.96	10.9	32.72	4.6
Water	0.50	0.1	1.09	0.2	3.77	0.5
Total	713.41	100.0	713.44	100.0	713.45	100.0

Major Land Use/Cover Conversions 1976-1988

N

Land Use/Cover Changes

Mixed Rangeland to Urban
Agriculture to Urban
Bushland to Urban
Shrubland to Urban
Transitional areas to Urban
Bushland to Agriculture
Agriculture to Forests
Mixed Rangeland to Shrub
Bushland to Shrubland
Forest to Bushland

Major Land Use/Cover Conversions 1988-2000

Land Use/Cover ConversionTrends

Land Use/Cover Conversions

"From"	"oT"	1976-1988 (km ²)	1988-2000 (km ²)
Mixed Rangeland	Urban	22.00	29.61
	Agriculture	10.90	22.01
	Bush Land	12.98	16.48
	Transitional	27.95	16.67
Bush Land	Urban	8.40	3.65
	Agriculture	24.20	21.53
Transitional	Urban	4.38	8.56
	Agriculture	6.34	19.34
Shrub/Bush range	Urban	8.61	11 .27
	Agriculture	7.90	10.38
Forest	Urban	4.03	2.75
	Agriculture	12.99	4.99
	Transition	13.95	1.02
	Bush Land	13.38	10.06
Agriculture	Urban	2.07	3.76

Modeling Nairobi's urban growth using Cellular Automata .

Urban Modelling with Clarke CA Model

General formula for cell states in Cellular Automata (CA) Model $S_{t+1} = f(S_t \Omega_t TP)$

Where : S_{t+1} is cell's state , Ω_t ,neighbourhood and, TP transition potential

$${}^{t} \mathbf{TP}_{u, x, y} = (1 + {}^{t} \mathbf{A}_{r}, {}_{u, x, y}) (1 + S_{u, x, y}) \mathbf{X}$$
$$(1 + {}^{t} \mathbf{Z}_{u, x, y}) ({}^{t} \mathbf{N}_{u, x, y}) {}^{t} \mathbf{v}$$

Where,

Tp _{u, x,y} is the CA transition potential of cell (x, y) for land use u at time t t A _{r, u, x, y} is the accessibility of cell (x, y) S _{u, x,y} is the suitability of cell x, y for land use u t Z _{u, x, y} is the zoning status v Is the scalable random perturbation

Model Framework

Data for Model Building

Data Land use/cover (Urban Extent) Slope **Excluded Areas** Roads Hillshade **Population** GDP Etc.

Source Landsat Images (1976, 1988, 1995, 2000)1:50,000 Topographic Map 1:50,000 Topographic Map Road map (1976, 1988) 1:50,000 Topographic Map **Population census Economic Survey**

Land Use/Cover Classifications

Urban Extents

Areas Excluded From Urban Growth

Network of Main Roads

Population in Nairobi Source: Population census

Nairobi's GDP values Source: Economic surveys

Model Calibration

 Control data used to identify growth parameters through Monte Carlo iterations

 Sequential multi-stage reduction (Brute Force Calibration)

Model parameters and Growth Types

Best Overall Calibration Coefficients

Cluster r ²	0.90		
Edges	0.89		
Population			
(urban pixels) r ²	0.86		
Compare	0.99		
LeeSallee	0.40		
Diffusion	4		
Breed	5		
Spread	98		
Slope	4		
Road gravity	75		

Final Model Parameters

Accuracy

assessment

(a) Model results(b) Actual (from Satellite data)

Accuracy Assessment

<u>Year 1995</u>

Class Name	Producer's Accuracy	User's Accuracy	
	(omission)	(commission)	
Urban	47.2 %	69.6 %	
Non-Urban	95.4 %	79.9 %	
Overall Accuracy $-\frac{80}{20}$ Overall $x = 0.81$			

Overall Accuracy = 80.0%, Overall $\kappa = 0.81$

Year 2000

Class Name	Producer's Accuracy	User's Accuracy
Urban	45.2 %	67.6 %
Non-Urban	97.4 %	80.9 %

Overall Accuracy = 86.0%, Overall $\kappa = 0.83$

Simulated Urban Expansion (2000 - 2030)

Area

(2000)

Conclusions

- Substantial Land use/cover changes have taken place, with notable rapid urban expansion.
- CA based Simulated results show rapid urban growth of Nairobi by 2030
- CA modeling for policy scenarios is useful in planning and sustainable management of land resources.
- Simulated pattern of urban sprawl will have significant implications in policy making and urban planning

Further Research

Modeling urban growth patterns in data-sparse environments: A new approach.

- Simulation of spatial patterns
- Spatial-temporal processes
- Social economic variables

Spatial logistic regression + Marcov Chain ?

Thank You.

Summary of Growth types simulated by model

Growth cycle	Growth type	Controlling	Summary description
order		Coefficient	
1.	Spontaneous	dispersion	Randomly selects potential new growth cells
2.	New spreading	breed	Growing urban centers from spontaneous growth
3.	Edge	spread	Old or new urban centers spawns additional growth
4.	Road-influenced	l road gravity	Newly urbanized cell spawns growth along transportation network.
Throughout	Slope resistance	slope	Effect of slope on reducing urbanization
Throughout	Excluded layer	user-defined	Areas resistant or excluded to development specified

Simulation Flow

