Proceedings on Spatial Information Sciences

Yamanaka-Lake Seminar (11th-12th July 2010)

Vol. 4

2010

Division of Spatial Information Science, Geoenvironmental Sciences,
Graduate School of Life and Environmental Sciences,
University of Tsukuba, Japan
Organized by
Division of Spatial Information Science
Geoenvironmental Sciences
Graduate School of Life and Environmental Sciences,
University of Tsukuba
1-1-1 Tennodai, Tsukuba City, Ibaraki, Japan

Organizing committee
Mr. Yuki Hanashima
Ms. Chiaki Mizutani
Mr. Toshio Soga
Ms. Misao Hashimoto

Advisers
Prof. Yuji Murayama
Dr. Takehiro Morimoto
Dr. Hiroyuki Kusaka
Dr. Thapa Rajesh Bahadur
Dr. KoKo Lwin
Editor

Yuki Hanashima
Email: hanashima@geoenv.tsukuba.ac.jp
Division of Spatial Information Science
Geoenvironmental Sciences
Graduate School of Life and Environmental Sciences
University of Tsukuba
Contents

1. 中国・北京市における地下鉄開通に伴う駅周辺の都市開発の状況に関する研究
 Lei Su 蘇磊
 1

2. Tsunami vulnerability assessment using GIS
 Voulgaris Gerasimos
 2

3. 研究計画書
 MingZe Sun 孫鳴澤
 3

4. Land Use Change Modeling in SIAK DISTRICT, RIAU PROVINCE, INDONESIA using Multinomial Logistic Regression
 Chandra Irawadi Wijaya
 4

5. 松山市における四国支所の立地要因
 Hiroaki Sugino 杉野弘明
 5

6. EV(電気自動車)の充電施設の立地
 Ryuta Kamiya 神谷隆太
 6

7. A GIS based water distribution management : A case study of Sedawgyi Dam, Mandalay
 Khun Kyaw Aung Hein
 7

8. 中国吉林における女性の購買行動—長春市朝陽区を事例として
 Tingting Yan 嚴ていてい
 8

9. GIS application for Flood Disaster management in Sri Lanka
 Don Pradeep Surantha Dassanayaka
 9

10. 公共ホールの周辺環境分析
 Soga Toshio 曽我俊夫
 10

11. ヒグマの獣害が発生する要因に関する空間分析
 Misao Hashimoto 橋本操
 11

12. Study site profiling and SWOT analysis: approaches in refining research goal & objectives
 Ronald C. Estoque
 12

13. Site Suitability for Ecotourism using GIS & AHP: A Case Study of Surat Thani Province
 Khwanruthai Bunruamkaew
 13

14. 土地利用データと実世界の差異における要因分析
 Yuki Hanashima 花島裕樹
 14

15. Forecasting deforestation and land suitability assessment in the Tam Dao National Park region, Vietnam
 Duong Dang Khoi
 15

16. Spatial Behaviour of Residents after the 2004 Chuetsu Earthquake using Space-time cube analysis. A Case Study of Kawaguchi Town, Japan
 Matteo Gismondi
 16

17. 面的広がりを有する地物を対象とした時空間分析: 土地利用遷移を事例に
 Chiaki Mizutani 水谷千亜紀
 17

18. Geographical Characteristics of Telemedicine in Korea and Japan
 Sookyung Park
 18
中国・北京市における地下鉄開通に伴う駅周辺の都市開発の状況に関する研究

蘇磊
研究生
<ydd1506@gmail.com>

1．研究背景と目的
近年、北京では地下鉄道網の拡充がおこなわれている。現在、北京市において地下鉄・鉄道網の新規建設が進められているが、2015年には路線数19本・路線長561kmに達し、世界で最も軌道交通網の路線長が長い都市になる。この新規建設が予定されている駅の中には、すでに周辺で商業地・住宅・公共施設などが開発している地域もあれば、未開発地域もあり、各駅で現在の市街地の状況はさまざまである。またその市街地の都市開発の現状によって今後の市街地形成のあり方にも違いがあると考えられる。本研究では、中国・北京市を調査対象とし、急速に進めている市街地の都市開発状況に関する調査・分析をしている。具体的には以下の2点を目的とする。

Ⅰ．既存地下鉄駅周辺における都市開発の状況を明らかにする。
Ⅱ．地下鉄の新線開通駅周辺における市街地の変化に与える影響を予測する。

2．研究エリア
Tsunami Vulnerability Assessment using GIS

Voulgaris Gerasimos
Research Student
<gvsquall@hotmail.com>

(1) Objectives:
This research aspires to calculate the tsunami vulnerability of the buildings in an area in Japan that has been struck by tsunami waves in the past, using data that will be gathered in a GIS database and processed to produce tsunami vulnerability thematic maps. Through this research it will be possible to identify the reasons for high or low vulnerability and it will be attempted to propose alternatives for the cases where the vulnerability is high.

(2) Methodology:
The methodology that will be followed is that which has been implemented in the Selianitika and Akoli beaches in the Corinth Gulf in Greece (Papathoma and Dominey Howes, 2003), as well as in selected suburbs of Sydney Australia (Dall’Osso and Dominey-Howes, 2009). First a GIS database is established, which contains various information about the study area and the buildings in it, such as the building material, the floors of each building, the surroundings of the building etc. What is also taken into consideration is the inundation height of the tsunamis that have happened in the past, and the contour of the largest inundation characterizes the inundation zone. By applying the Building Vulnerability formula (Papathoma and Dominey Howes, 2003), each building is characterized by Low, Medium or High tsunami vulnerability, which is then displayed in a series of thematic maps.

(3) Results and Discussion:
Since this is still a research plan, it is subject to many changes and suggestions or corrections are more than welcome.
研究計画書

孫 鳴沢
研究生

(1) 研究背景:
都市の開発が進むとともに、比較的いい住宅・宅地については住民が呼び掛けている。人々の生活環境はとても重要であり、人間の気持ちや健康に影響がある。居住環境を評価し、人間への影響を定量化し、その手法を検討する。

居住環境を評価するため、進め方を具体的に検討する必要がある。都市の詳しい空間情報を入手し、評価の手法を検討する。

想起した問題は人々が何の原因でその地方に住む。人間は居住環境に満足しているのか。どういう最適な環境で住みたいと、この回答を探求したい。

多様化する居住環境に評価し、よりいい環境を提供するのは我々の任務です。以上は本研究の背景である。

(2) 研究目的:
これからの研究では、GISにより既存空間データから地区の詳細な情報を取り出し、住民の満足度を反映した居住環境を評価することを目的とする。

(3) 研究手法:
研究の進捗は毎週先生と検討しながら、進める。
文献の調査。図書館に過去相関先行研究を詳細に調べ、具体的な研究方向を決める。あとはデータの分析と評価方法の確立。前的研究により、物理環境によって人々によって満足度を評価する手法そして「アメニティ」、「住環境」、「生活の質」などがある。様々な手法と指標がある。

本研究では、緑化の環境について、緑被率が定義した。緑被率は土地被覆分類図により、算出する結果である。こういうデータを入手する手法や分析方法について、先生と検討し、慎重に決定する。

もうひとつは施設について、評価したい。施設について、たとえば、銀行、コンビニ、レストランなど、人々の生活の不可欠の一部の施設の普及の程度を算出する。それぞれの便利度や施設満足度を定義する。

最後は居住環境を改善する提案を提出する。施設や緑地の平均値により、地域改造計画を設定する。

(4) 結果の予想:
本研究を大学院の2年間で行う。関連データを収集することにより、GISを利用し、居住環境を評価する方法を試す。今後の居住環境を評価する方法について、示唆できるようにしたい。

(5) 将来展望
相関の分野に、たとえば、地域開発、生態環境の改善とかについて、参考の価値ができるように頑張る。
この半年、皆さんと共に勉強できて、とても楽しかったです。来年からもよろしくお願いします。GISの明日は我々の手の中に、活用するように、頑張りましょう！
Land Use Change Modeling in Siak District, Riau Province, Indonesia
Using Multinomial Logistic Regression

Chandra Irawadi Wijaya
Exchange Research Student
<kickchandra@gmail.com>

(1) Objective:
Land use change modeling in Siak District has been conducted in order to analyze the land use change during 2002 – 2005 and 2005 – 2008, to identify the driving factors of land use change and develop the land use change model of Siak District, to examine the performance of Multinomial Logistic Regression (MLR) model in modeling the land use change, and to develop the land use change scheme of Siak District.

(2) Methodology:
Land use change modeling in Siak District has been conducted in four main activities: (1) Field data collection, (2) Land use classification, (3) Land use change detection, and (4) Land use change modeling. Field data collection aimed to collect the primary and secondary data for this research, such as LANDSAT images, digital elevation model (DEM), demography data, and other related data. Land use classification has been done in two main processes: image pre-processing and image processing. Image pre-processing consists of processes to prepare image data for subsequent analysis that attempts to correct or compensate for systematic errors, and image processing conducted in order to derive the land use categories from LANDSAT images. Land use change detection has been done in order to extract the land use transitions 2002 – 2005 and 2005 – 2008 which would be used in land use change modeling by considering the relevant driving factors of land use change in Siak District.

(3) Result and Discussion:
During 2002 – 2008, Forest land, Cropland, Grassland, Wetland, and Settlement tend to be in stable condition, and only Other lands which changes dynamically. However, the probabilities of each land use to transform into other land uses are also quite significant. The likelihood ratio test for each independent variable shows that the land use change in Siak District is driven by natural environment (6 variables), human environment (15 variables), and policy (3 variables) to the final model. The likelihood ratio test for the final model and pseudo r-squared statistics, indicate that the final model of land use change in Siak District which has been developed is a good model that could explain most of the variability of land use change happen in the research site. However, the model validation which has been conducted spatially indicates that the final model can only simulate 63.45% of the total area of Siak District. The final model could not fit the actual spatial data layers completely into the actual condition of land use change 2005 – 2008.

The land use change scheme 2002 – 2005 and 2005 - 2008 shows that all land use categories tended to in stable condition with high probabilities. The land use change scheme 2002 – 2005 also show that the three dominant land use categories in Siak District, which are Forest land, Cropland, and Grassland, transformed each other which constructed the triangle of major land use transitions with reciprocal transitions. However, during 2005 – 2008 the transformations from Forest land to Cropland and Grassland (deforestation) happen in one-way transitions, and the reforestation did not count as major land use transitions. Based on the observation in the research site, the major driving factors of land use change in Siak District are the existences of crop and timber plantation, the existences of road network, and the spatial plans. These observed driving factors are in accordance with the significant variables of Siak District’s land use change model which have been resulted by MLR model analysis.

(4) Conclusion:
The final model of land use change in Siak District which has been developed by using MLR model is a good model statistically, but it is not too good spatially. This model should be modified for the future research in order to develop the land use change model which is good statistically and spatially. The land use change schemes of Siak District which have been developed and the observed driving factors can give clear figures on how the major land use transitions happen in Siak District.
松山市における四国支所の立地要因

SUGINO Hiroaki
First Grade Master Student
<berry@geoenv.tsukuba.com>

(1) 研究目的

企業の本社・支所の結合関係から都市の結合関係や階層性を分析する研究はこれまで多数おこなわれてきた。松山市における四国支所の立地要因について、その実態は未だ明らかとなっていない。そこで本稿では、松山市における四国支所の立地要因を明らかにすることを目的とする。

(2) 研究方法

松山市に所在する支所、とりわけ四国支所の特性を事業所・企業統計、えひめ経済レポート社出版の『会社年鑑 地場・出先2009年版』、アンケート調査より分析する。また、アンケート調査に加え、代表的な事例支所10支所に対し聞き取り調査をおこない、得られた個々の企業のより詳細な立地理由から要因を分析した。

(3) 研究結果

本稿で明らかになった点をまとめると、第一に、松山市におけられる支所は①従業員数からみた支所規模が愛媛県全域をテリトリとする支所と少少ない(表1)、②愛媛県での取引額シェアが他県に比べ大幅に卓越する。その理由として、①四国内で下位機関を持つ企業が少ないという事柄から、ブロック全県を結び目とする支所としては立地・経済的要因であるといえる。第二に、松山市における四国支所の経済的立地要因は以下の3つに大別され、①松山市において県域および市域で最大となる人口規模、②総務省総合通信局や旧公社であるNTT、郵政関連企業の四国を結び目とする支所の存在、③大手地場企業を中心とする特定取引先の存在であった。一方、非経済的な立地要因として、特定の産業が大きな役割を果たす場合もあることがわかった。

参考文献

阿部和俊(2004)：「都市の盛衰と都市システムの変容」。阿部和俊・山崎朗著：『変貌する日本のすがた—地域構造と地域政策』。古今書院。
白石善春(2007)：「広域中心都市及び県庁所在都市における経済的中枢管理機能の立地特性」。人間社会環境研究13;175-184。

表1: 松山市における支所テリトリ別・従業者数別企業支所数(2008年)

<table>
<thead>
<tr>
<th>支所のテリトリ</th>
<th>支所数</th>
<th>従業者数</th>
<th>計</th>
<th>平均従業者数</th>
<th>中央値</th>
</tr>
</thead>
<tbody>
<tr>
<td>松山市全域 (%)</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>愛媛県全域および愛媛県一部 (%)</td>
<td>21</td>
<td>84</td>
<td>11</td>
<td>8 (6.7)</td>
<td>(6.7)</td>
</tr>
<tr>
<td>奈良県および四国本島 (%)</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>四国全域 (%)</td>
<td>8</td>
<td>21</td>
<td>6</td>
<td>2 (4.9)</td>
<td>(4.9)</td>
</tr>
<tr>
<td>その他 (%)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1 (3.5)</td>
<td>(3.5)</td>
</tr>
</tbody>
</table>

備考: 表のテリトリは主に対象事業所の営業所を含む地区。
(1) はじめに:
今日では日本に限らず世界中で 「エコ」 が叫ばれている。そのような風潮から最近では軽量化されたペットボトルに入れられた飲料水の「いろはす」や、家庭用電気製品において節電を促し消費電力抑えようという「エコナビ」、そしていわずと知れた高燃費を誇る「プリウス」などが社会に出回っている。
そこで研究では近年登場した EV（電気自動車）を取り上げ、その充電施設の立地について検討したいと考えている。電気自動車は内燃機関を持たずに、電気によって駆動するモーターのみによって駆動する自動車である。これは HV（ハイブリッド自動車）がモーターの力によって高燃費を稼いだことからユーザーによる「いっそのことモーターだけの自動車がいいのではないか」という感情と、それが実際に可能になるレベルにまで進化した電池の技術がもたらしたものである。
従来の内燃機関を搭載した自動車の燃費は幅が広く、日本車において10・15 モードで10〜37 km/ ℓ 程度である。高燃費な車ほど大型車が多く、大容量の燃料タンクを積んでいることから、燃料を満タンに搭載している状態からの航続距離は少なく見積もっても 500 km以上であり、低燃費な車では 1000 km以上走る車も存在する。それに比べて電気自動車は航続距離を伸ばすためには電池をより多く搭載しなければならず、コスト増や車両重量の増加などデメリットがついて回ってしまうため、この距離は市販される予定の車種で 200 km弱程度となっており、最長でも「デスラロードスター」の 350 kmである。
このような従来の自動車と電気自動車で大きく異なる航続距離を考慮して、これから新たに充電施設を設置する際の間隔を検討し、実際の都市においてその条件に合うように充電施設が設置できるかどうかを検討したい。

(2) 研究対象地域:
現在のところ充電器が存在するのは主に東京都と神奈川県であるため、充電器設置者に対する聞き取りはこの 2 つの地域でおこなう予定だが、実際の都市でおこなう検証の場所は未定である。できれば近い場所を、と考えている。

(3) 研究方法:
電気自動車のメーカーや充電施設導入を検討している企業や団体への聞き取りを考えている。また検討は実際に自分で施設立地の条件を決定し、GIS 上でそれを実験してみたいと思う。

(4) 今後の予定:
9 月までに聞き取り調査をいくつかはおこないたいと思っている。また、立地論に関する木を多く読み込みたいと考えている。また、8 月中旬から9 月中旬までHV、PHV、EV についてのインターンシップをする予定なのでそこで多くの人から話を聞きたいと思う。
Water Distribution Management Using GIS : A case study of Sedawgyi Dam, Mandalay , Myanmar

Khun Kyaw Aung Hein
First Grade Master Student
< kyawaunghein@gmail.com>

(1) Introduction:
The national economy of Myanmar is highly dependent on agriculture. The agricultural sector is the most economic of the state as well as the main sources of the livelihood in the rural. Water utilization for agricultural sector stands for 90%. Control and management of water distribution is important for sustainable development of the rural areas.

(2) Study Area:
Geographically, Mandalay is located in the central dry zone of Burma by the Irrawaddy river at 21.98° North, 96.08° East, 64 meters (210 feet) above sea level. Mandalay has divided into 7 townships the total has 43.6 sq mi (113 km2). Sedawgyi dam is located central Myanmar call dry zone in Mandalay. Dam is (4,120) feet in length and its height is about (133) feet. Full-tank capacity of the reservoir is (363,000) acre-feet to be able to irrigate (127,000) acres of agricultural land. Sedawgyi dam is reliable sources of water for irrigated. Consumption of storages water from Sedawgyi dam is not only for irrigation agriculture but also for drinking purpose to the city. The agricultural system in Mandalay is totally highly depend on the dam irrigation system especially Sedawgyi dam.

(3) Objective:
The objective of this study aims to evaluate the important role of water distribution management using GIS.

To evaluate the role of water distribution management pattern and management system
To understand the knowledge of tools and techniques use in water distribution management and ability and apply to solution for water distribution management challenges

(4) Conclusion:
In order to achieve the objective :
GIS
Remote Sensing
Using GIS the water distribution management systems aims to achieve equal and efficient water use in the area. A low water distribution management system and inadequate fields water management are the main issues in this area. By using GIS , that has capability to improve water distribution management systems as well as decision- maker. Increasing demand for water and water distribution management, environment-tal concern, GIS is a practical tool that is applicable to a wide range of water distribution management and development problems. The spatial and temporal variability may create problem to traditional water distribution management support system, GIS can be solution in this regard.
中国吉林における女性の購買行動—長春市朝陽区を事例として

厳 ている
博士前期課程 1 年
<tingting@geoenv.tsukuba.ac.jp>

（1）研究の背景と目的：

中国経済の急速な発展に伴ない、国民の消費意識と消費レベルが高まる傾向にある。特に、消費主体としての女性の購買行動が一層目立つようになった。このため、女性の購買行動における研究は以前から数多くされている。しかし、専業主婦と働いている主婦の異なる購買特徴を分析する研究は必ずしも十分ではない。

本研究では女性の購買行動に焦点をあて、専業主婦と働いている主婦の異なる購買特徴を分析することから、2種類主婦の購買行動の発生頻度、買物経路、交通手段などの違いを明らかにする。

（2）研究対象地域:

本研究では、中国吉林省長春市に位置する地域発展が最も著しい朝陽区を研究対象地域とする。朝陽区の自動車産業開発区にある欧亜売場 (Eurasia Shopping Mall) はアジア敷地面積最大のショッピングセンターである。延床面積は 52 万㎡、駐車場面積は 20 万㎡である。欧亜売場は中国第一自動車集団公社（元・中国第一自動車製造工場）やその関連会社に勤務している職員とその家族のために作られたショッピングセンターである。そのため、ショッピングセンターの利用者は主に周辺に住む専業主婦や就業者である。この地域の商業活動が盛んになりつつある。

（3）研究方法:

朝陽区に居住する専業主婦と働いている主婦消費者にアンケートおよび聞き取り調査を実施する。分析には GIS ソフトウェアを利用し、女性消費者の買物経路のネットワークを構築し、時空間的分析を試みる。

（4）今後の予定:

7月中旬に中国に行き、現地調査を行う。長春市の消費者協会と市場調査会社を訪ねて参考になる資料を収集する。また、アンケートおよび聞き取り調査を行う。結果分析から 2 種類主婦の異なる購買特徴と買物経路を把握する。

調査の概要は以下の通りである。

◆ 調査地域
中国吉林省長春市朝陽区
◆ 調査実施時期
7月中旬～8月中旬
◆ 調査対象
専業主婦、働いている主婦
◆ 調査方法
質問票を用い、朝陽区の欧亜売場で買物する女性消費者にアンケート調査票を直接配布し、その場で収集する。
GIS applications for disaster risk management: A case study of Ratnapura District, Sri Lanka

Don Pradeep Surantha Dassanayaka
First Grade Master Student
< surantha.dassanay@gmail.com>

(1) Purpose of this study:
Aims to investigate the methodology to deliver the optimal land use plan to save the people from flood natural disaster.

(2) Introduction:
Sri Lanka is exposed to the risk by various natural hazards such as Tsunami, floods, landslides, windstorm, soil erosion & land degradation. As other less developed countries, Sri Lanka is in the initial stage of the adoption geo-information for in disaster management although new world trends to Web GIS, real time warning system, satellite earth observation for rapid damage assessment, data standard and highly advanced Technologies that could be used for disaster management activities.

(3) Motivation:
Every year, the people are suffering and some are killed by the flood disaster. Although the government has taken several initiatives to reduce vulnerability of the cities, the problems will persist to continue. It’s necessary to evaluate the environment of the people living. GIS and Remote sensing techniques can contribute to evaluate the environment and to minimize the risk of disaster.

(4) Methodology:
1. Evaluate the physical environment using remote sensing and GIS techniques (Terrain analysis, hydrological drainage analysis and other analysis)
2. Evaluate the social environment through the field work (interview the people, to know how they use their land, to know the governmental treatment like land use regulation or master plan)
3. Overlay the physical evaluation and social evaluation
4. Design the optimal land use plan based on the both environmental analysis
5. Share the optimal land use plan with people
公共ホールの周辺環境分析

曽我 俊生
Second Grade Master Student
<sogato@geoenv.tsukuba.ac.jp>

(1) 目的:
人間の場所に対する認知や行動は、周辺環境つまりその空間に存在する他の要素に影響をうける。先行研究によれば、参道空間やテーマパークの雰囲気醸成にあたって、地形や構成物の与える影響は大きいという（船越ほか，1988；近藤ほか，1999）。公共ホールも、芸術空間としての雰囲気が形成されるにあたって周辺環境の影響は無視できない。しかし「雰囲気」に着目したとき、先行研究の多くは鑑賞者アンケートなど、当日の公演内容に大きく左右されるデータを使用している。よって本研究では、公演内容に左右されないデータを用いて、公共ホールの周辺環境を考察していく。

空間の構成要素の分析や、周辺の土地利用等を分析することで、「周辺環境」の特徴を明らかにして、雰囲気が醸成される要因を探る。

(2) 方法:
横浜市内の公共ホール41箇所について、最寄り駅から当該ホールまでの経路をpolylineで作成する。各々のオブジェクトに対し線バッファを生成させ、そのバッファ内にある土地利用について、全体に占める割合等、それぞれの特徴を明らかにする。

(3) 結果:
各経路における土地利用の割合は下図のようになった。「区画密度」に関しては、近年に建設された所の経路が軒並み低密度であった。反対に、古い年代に建設されたホール、もしくは駅ビル等複合施設の一部をホールとして利用している所では高密度となっている。このように土地利用の状況とホールの特徴には相関が表れている。今後は他の要素も同様に検討し、より詳細な考察を得る予定である。

参考文献:
近藤龍司・土肥真人・柴田久 1999．東京ディズニーランドにみる日常から非日常への心理的変化と環境の相互関係の研究．ランドスケープ研究 62：669-672。
船越徹・積田洋・清水美佐子 1988．参道空間の分節と空間構成要素の分析（分節点分析）．日本建築学会計画系論文報告集 386：53-63。

注:
区画密度（Polygon-Density）は以下の式で表す。

\[
PD = \left(\frac{\text{当該経路におけるポリゴン総数}}{\text{各線バッファの面積（㎡）}} \right) \times 100000
\]
ヒグマの獣害が発生する要因に関する空間分析 —北海道新ひだか町を例として—

橋本 操
Second Master Student
<misao@geoenv.tsukuba.ac.jp>

(1) Objectives:
近年、野生動物と人間を取り巻く問題として、野生動物が人里に侵入して起こる農作物被害や人身被害が顕著になっている。日本における野生大型獣の被害としては、シカ、カモシカ、クマ類、イノシシがみられる。クマ類による被害は農作物の食害と壮齢木の剝皮、人身被害である。

日本には 2 種類のクマがおり、北海道にヒグマ、本州と四国にツキノワグマが生息している。北海道のヒグマにおいては大型で危険なため、対応策としては依然として狩猟に頼っているのが現状であり、なぜヒグマが出没したのかが正しく判断されず、単に危険な状況として扱われている。そのため、捕獲・駆除が行われている地域の原因を調べ、それに合った対応策を構築しなければ、本当の意味での被害の減少にはならない。

以上のことから、本研究では 1991～2006年に駆除されたヒグマについて、ヒグマが獣害を発生する要因について明らかにするのを目的とする。

(2) Methodology:
日高の 1991～2006年に捕獲されたヒグマについて、ヒグマが出没する場所や捕獲された場所およびその周辺の環境状況から、ヒグマによる獣害が発生する要因について明らかにすることを目的とする。

(3) Results and Discussion:
新ひだか町が含まれる北海道日高において、1991～2006年に捕獲されたヒグマの特徴として以下の傾向が見られた。

新ひだか町が含まれる北海道日高において、1991～2006年に駆除されたヒグマについて、ヒグマが出没する要因について明らかにする（5章）。

参考文献
亀田正人・丸山博・前田菜穂子 2007. ヒグマをめぐる厚沢部町および長万部町住民の意識と行動 室蘭工業大学紀要 57:1-15。
Study site profiling and SWOT analysis: approaches in refining research goal & objectives

Ronald C. Estoque
First Grade Doctorate Student
< purplebee80@yahoo.co.uk >

(1) Background and Objectives:
In the Philippines, one of the youngest and growing metropolitan areas is Metro BLISTT. Baguio City, the Metro center, has been growing since its establishment in the early 1900s. Urban areas are continuously growing and extending towards the outskirt of the city. This urban growth can have both positive and negative effect to the adjacent municipalities of the city that form the Metro BLISTT. On the other hand, it is possible also that these municipalities can have significant contribution in the urbanization process. Infrastructures and other developments have provided people more opportunities in their lives. However, problems have also surfaced and are continuously emerging as a consequence of urbanization, and these may be aggravated if future developments are not carefully planned. Apparently, a comprehensive and responsive development plan that will guide the local executives in their decision-making and in setting the desired future of Metro BLISTT is very important. Cognizant to the foregoing, a proposed study entitled “Land use change analysis and urban growth modeling in Metro BLISTT, Philippines” was developed with a main goal of contributing scientific input for better land use planning and resources allocation and management of Metro BLISTT. Specifically, it aims to analyze land use change patterns, investigate the factors that drive urban growth, and project future urban growth.

The objective of this paper is to obtain more knowledge about the study area and to evaluate the strength and weaknesses of the proposed study as well as the opportunities and threats that may affect it. It is hoped that this could help in refining the goal and objectives of the proposed study.

(2) Methodology:
In order to attain the objective of this paper, two approaches named profiling and SWOT analysis were used. Profiling was done to capture the real picture of the study area. It involves tracing historical developments and gathering information about its current status and plans. SWOT analysis is a strategic planning tool used to evaluate both internal and external factors that affect a particular entity or initiative in attaining its goal. SWOT stands for strengths (Ss), weaknesses (Ws), opportunities (Os), and threats (Ts). In this paper, SWOT analysis was used to help evaluate the research proposal’s Ss, Ws, Os, and Ts in attaining its goal. Furthermore, it was used to analyze how its Ss can be used to take advantage of the Os & minimize Ws & avoid Ts.

(3) Results and Discussion:
Some of the significant information learned through profiling include: Metro BLISTT has a diversified landscape, both physical and socioeconomic, across the different municipalities; Baguio city has really grown up to the extent that its current population has grown 12x of its designed maximum population; environmental and health related problems have emerged as a consequence of urbanization; actions that may provide better framework to handle future development of Metro BLISTT have been initiated.

Based on the SWOT analysis, Ss and Os outweighed the Ws and Ts in pursuing the proposed study to generate scientific basis for better land use planning and resources allocation and management of Metro BLISTT.

(4) Conclusion:
A better understanding about the study area was obtained and a careful evaluation of the Ss, Os, Ws and Ts of the proposed study was successfully carried out through profiling and SWOT analysis.
Site Suitability for Ecotourism using GIS & AHP: A Case Study of Surat Thani Province
Khwanruthai Bunruamkaew (Second Grade Doctorate Student)
<krt_b@hotmail.com>

(1) Objective: This main objective of this study is to identify and prioritize the potential ecotourism sites using GIS and AHP in Surat Thani Province, Southern Thailand.

(2) Methodology: The present study provides a methodological approach to assessing the suitability of ecotourism in the Province of Thailand. To achieve this goal, there are 3 crucial steps to produce site suitability map for ecotourism which are (1) finding suitable factor to be used in the analysis, (2) assigning factor weight and class weight (rating) to the parameters involved and (3) formulation of land suitability map of ecotourism. The analytical hierarchical process (AHP) and geographic information systems (GIS) were effectively used for identifying the potential ecotourism sites.

(3) Result and Discussion:
The overall results recorded in form of a pairwise comparison matrix where the relative weight (and rating) for each factors

(3.1) Calculation detail of factor weight and class weight:

Step1 Development of the pairwise comparison matrix

<table>
<thead>
<tr>
<th>Factor</th>
<th>Natural</th>
<th>Wildlife</th>
<th>Landscape</th>
<th>Cultural</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>1.00</td>
<td>5.29</td>
<td>2.05</td>
<td>5.57</td>
<td>4.05</td>
</tr>
<tr>
<td>Wildlife</td>
<td>0.19</td>
<td>1.00</td>
<td>0.31</td>
<td>2.05</td>
<td>1.73</td>
</tr>
<tr>
<td>Landscape</td>
<td>1.00</td>
<td>3.00</td>
<td>1.00</td>
<td>4.57</td>
<td>3.10</td>
</tr>
<tr>
<td>Cultural</td>
<td>0.18</td>
<td>0.49</td>
<td>0.22</td>
<td>1.00</td>
<td>0.90</td>
</tr>
<tr>
<td>Community</td>
<td>0.25</td>
<td>0.58</td>
<td>0.32</td>
<td>1.11</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>2.62</td>
<td>10.36</td>
<td>3.90</td>
<td>14.30</td>
<td>10.78</td>
</tr>
</tbody>
</table>

Step2 Computation the factor weights and estimation of the consistency ratio

<table>
<thead>
<tr>
<th>Factor</th>
<th>Natural</th>
<th>Wildlife</th>
<th>Landscape</th>
<th>Cultural</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>0.38</td>
<td>0.51</td>
<td>0.53</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>Wildlife</td>
<td>0.07</td>
<td>0.10</td>
<td>0.08</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Landscape</td>
<td>0.38</td>
<td>0.29</td>
<td>0.26</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>Cultural</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Community</td>
<td>0.09</td>
<td>0.06</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

CR* = CI/RI
CR < 0.1 indicates that level of consistency in the pairwise comparison is acceptable

(3.2) Calculation detail of factor rate: For example of land use potential factor as table below:

Step1 Development of the pairwise comparison matrix:

<table>
<thead>
<tr>
<th>LU</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.00</td>
<td>2.81</td>
<td>3.67</td>
<td>8.68</td>
</tr>
<tr>
<td>S2</td>
<td>0.36</td>
<td>1.00</td>
<td>1.10</td>
<td>4.05</td>
</tr>
<tr>
<td>S3</td>
<td>0.27</td>
<td>0.91</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>N</td>
<td>0.12</td>
<td>0.25</td>
<td>0.33</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Step2 Computation on the factor rate

<table>
<thead>
<tr>
<th>LU</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>N</th>
<th>SUM</th>
<th>Weight</th>
<th>Rate**</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.57</td>
<td>0.57</td>
<td>0.60</td>
<td>0.52</td>
<td>2.26</td>
<td>0.56</td>
<td>1.00</td>
</tr>
<tr>
<td>S2</td>
<td>0.20</td>
<td>0.20</td>
<td>0.18</td>
<td>0.24</td>
<td>0.83</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>S3</td>
<td>0.16</td>
<td>0.18</td>
<td>0.16</td>
<td>0.18</td>
<td>0.68</td>
<td>0.17</td>
<td>0.30</td>
</tr>
<tr>
<td>N</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.23</td>
<td>0.06</td>
<td>0.10</td>
</tr>
</tbody>
</table>

**Linear scale transformation method used to convert weights into standardized criteria score.
Then, the maximum score used to standardize as

X'ij = Xij / Xj max

(4) Conclusion:
This methodology integrates five characteristics of ecotourism criteria that are naturalness, wildlife, cultural heritage, landscape and community. The evaluating process for ecotourism site was done based on 9 chosen factors which are scenic attractiveness, land use, suitable habitat, species diversity, elevation, slope, cultural uniqueness, distance from road and permanent settlement in the area. These factors were selected according to the professional opinions given (AHP). After that GIS technology will aggregate the layer objects in order to determine the suitable areas for ecotourism.
土地利用データと実世界の差異における要因分析

花島 裕樹
博士後期課程 3年
<yuki.hanashima@gmail.com>

(1) はじめに:
一般的に、広域な土地利用データの多くは、作業量を軽減するため、手続きを自動化し作成されている。リモートセンシング画像を用いた土地利用分類に代表されるように、画像処理技術の発展に伴い、実用性が向上したが、人間による手作業と比較すると多くの制約があるといえる。その一つに土地利用判読が挙げられる。自動化された処理では、土地利用判読に限界があり、主に外的な表面の特徴による分類に限定されているため、用途や管理者などの質的分類は非常に困難である。このような背景から、現在でも人間の手作業による土地利用判読の優位性は認められる。しかしながら、人間による土地利用判読は、判読者が対象をどのように認知し、どのように解釈するかに大きく影響される。加えて、幅広い仕事量から、ヒューマンエラーなどのミスも起こりうる。以上のように、人間による土地利用判読から作成された土地利用データは、現実世界との差異を含む。前述した現実世界との要因は、自動化された判読とは、異なる傾向を見せると予想される。そこで、人間による土地利用判読から作成された土地利用データの現実との差異の評価結果から、空間的な特徴を考察する。

(2) 土地利用データと現実との差異の分類:
土地利用データ上に見られる形状から現実との差異を次のように分類することが出来る（図1）。
- 吸収: 周囲の土地利用と同じ分類項目に分類されている状態。
- 単独誤判読: 対象とする地物が周囲の土地利用とは区別されており、かつ定義とは異なる分類定義に分類されている状態。
- 分類: 吸収, 単独誤判読の両者は現実世界との差異を反映している。
- 地理的特徴: 現実世界と土地利用データとの差異を反映する特徴。

(3) 土地利用データと現実との差異の空間分布:
前節で示した分類の空間分布と鉄道との関連を図2, 3に示す。元来公共施設は人口が集中する地域に多く立地する傾向が見られるが、現実との差異についても同様の傾向が見られる。

(4) まとめ:
土地利用データと現実との差異の空間分布を図示した。差異の形状や特徴による分類によって、立地特性が異なることが明らかになった。
Forecasting deforestation and land suitability assessment in the Tam Dao National Park region, Vietnam

Duong Dang KHOI
Third Grade Doctorate Student
<khoi_tn@yahoo.com>

Abstract
Deforestation is recognized as one of the major threats in the uplands of Vietnam. In particular, the occurrence of deforestation into the PAs is exerting pressure on biodiversity conservation across the country. The Tam Dao National Park (TDNP) region is one of the most important PAs of the country. It is endowed with some of the highest levels of biodiversity in the country. Forest conversion due to illegal logging and agricultural expansion due to growing population in its vicinity is a major problem that is hampering biodiversity conservation efforts in the TDNP region. Yet, areas vulnerable to forest conversion are unknown. To understand how the TDNP region has been transforming, land use/cover changes (LUCC) were analyzed and forecasted using satellite remote sensing and a multi-layer perceptron neural network (MLPNN) with a Markov chain model (MLPNN-M). The result of LUCC analysis revealed that changes in forest cover were major trends in the region. In particular, the loss of the primary forest for the periods of 1993–2000 & 2000-2007 was equal to 20.59% and 16.12% of the primary forest area in 1993 and 2000, respectively. The MLPNN-M model predicted increasing pressure in the remaining primary forest within the park as well as on the secondary forest in the surrounding areas. The primary forest is predicted to decrease from 18.03% in 2007 to 15.10% in 2014 and 12.66% in 2021. To prevent further forest conversion in the region, the land suitability assessment has been conducted for recommending more sustainable land use management practices. The results indicate the location and extent of crop farming areas in different suitability levels, i.e., most suitable (28.10%), moderately suitable (23.96%), marginally suitable (28.77%) and least suitable (19.17%). The current cropland covers 46.5% of the study area, while most and moderately suitable areas are estimated to be 52.06% of the territory. The land suitability map can be used to delineate priority areas for crop farming and sustainable land-use management. The MLPNN-M provides an effective instrument for understanding the dynamics of the remaining forests while the MCE provides a useful tool for improving the sustainability of land use in the TDNP region.

Keywords: land use/cover change, deforestation, multi-layer perceptron neural network, Markov chain, multi-criteria evaluation, analytical hierarchy process and fuzzy set
Spatial Behaviour of Residents after the 2004 Chuetsu Earthquake using Space-time cube analysis.
A Case Study of Kawaguchi Town, Japan

Matteo GISMONDI
Third Grade Doctorate Student
<matteo.gismondi@gmail.com>

(1) Introduction
Japan have a long history in seismic events due to its proximity to faults. Despite the several efforts done, earthquakes are still a menace especially in rural areas where the technology is late to arrive.

(2) Objectives
The aim of this paper is to analyze the regional differences in behavior and investigating its causes after an earthquake using time-space cube tools.

(3) Methodology:
The basic features of the map such as buildings, roads, rivers, administrative boundary, and digital elevation model (DEM) were acquired from Zenrin and Hokkaido-Chizu. The Census data for was downloaded from the Niigata Prefecture archives. Three sample areas, a central, peripheral, and an isolated settlement are selected in order to verify the differences in community organisation within the same town of Kawaguchi. To collect information concerning the behavior after the 2004 earthquake, 50 interviews were performed for 40-120 minutes to the members of the town. Interviews allowed collecting qualitative data, which is used to understand the community behavior. In order to produce quantitative data, a short questionnaire was distributed at the end of the interview. The movement during the recovery process of each respondent were mapped for the first four weeks of the recovery process. Using the space-time cube plug-in of Udig (open source GIS software) a temporal analysis and representation of the data was produced.

(4) Results and Discussion:
The central area is composed by 6 communities, whereas the community boundaries are official, cases representing lack of collaboration appear in a portion of the population. The type of working activity contribute in weakening the social network between residents, having the monthly meeting as the only occasion of concretely have a community life. This situation reflects the lack in organization and collaboration in the temporal analysis.

The peripheral area is composed by 2 communities. In the area the agricultural activity becomes progressively predominant explaining the good connections between residents. Hence because of the larger space separating each household, stronger bonds appears more evident at the neighborhood level as highlighted by the temporal analysis.

The isolated area is composed by 1 community. Hence it is the community with the highest age average in the town, it is also the most active. The agriculture as main working activity and the higher age average contribute positively in straightening the social connections within community members. Temporally a coexistence in time and space can be detected identifying the local shelter as main location of the rehabilitation process.

(5) Conclusion:
This study highlights the importance of the community system in rural areas. The three study areas behaved in a different way influenced by the communication network, type of working activities, level of provisions, number of community members and degree of damage. The temporal analysis is considered as an essential tool to comprise the whole recovery process at different time stages.
面的広がりを有する地物を対象とした時空間分析: 土地利用遷移を事例に
Spatiotemporal analysis on areal objects: A case study of land use transition

水谷千亜紀／Chiaki Mizutani
博士期課程 3 年／Third Grade Doctorate Student
<mizutani.sis@gmail.com>

(1) Objectives:
地物の時空間記述に関して、住宅地のように特定の地物を表す領域を対象としたものに重点が置かれてきた。しかし、これでは小領域が対象領域を埋め尽くす地物を表現することはできない。そこで本研究では土地利用遷移という領域の形状と、属性が遷移する事象を対象として、時空間分析を行うことを目的とする。

(2) Methodology:
茨城県つくば市中央部のポリゴン型土地利用（2000, 2005年; 以下で t1, t2とする）を使用する。道路、河川、軌道など線状ポリゴンで区分される地区を街区と定義し、t2における街区と街区内のポリゴンに着目する。街区内のポリゴンは、t1-t2 にかけてポリゴンの形状および属性の遷移を経験しており、その遷移と周囲のポリゴンとの関係性を分析する。本論では街区の周長に対する街区内を区分する境界線の総長の比（π指標）を求める。

(3) Results and Discussion:
484 街区において、複数のポリゴンを含有する 269 街区を対象とし、街区の周長と街区内を区分する境界線の総長を表にプロットした。まず単一のポリゴンで構成される街区が約4割を占めている。これらの街区では、時間的空間的にも安定している場合と土地利用遷移によって全く新しい用途になった場合とに分けられる。一方、複数のポリゴンを含有する街区について、属性としては安定していても、細分化された形状を保っている場合のπ指標は高くなり、細分化されている程、その傾向が顕著であった。対して、ポリゴンの拡大などが起こった街区では、街区に占める面積占有率が低いとポリゴンが存在する傾向がある。

(4) Conclusion:
ポリゴン型土地利用分析を行う際に、ポリゴンの周長を土地利用遷移の時空間分析に用いる有効性が示された。
Geographical Characteristics of Telemedicine in Korea and Japan

Sookkyung Park
3rd Grade in PhD Course
<maria1570@gmail.com>

(1) Objectives:
The outstanding results on the spatial organization of telemedicine provide some answers based on regionalization, and these arguments are rendered in terms of health care delivery and informational considerations. It would ensure that patients can access and utilize medical institutions offline, while guaranteeing medical institutions remain viable online since patients could be connected to each medical facility as the telemedicine supplier via telecommunication facilities. Korean and Japanese telemedicine practices have been developed within the context of regional health care delivery; their effectiveness has not been verified by studies that use geographical approaches. Therefore, this discussion puts forth arguments on telemedicine networks in Korea and Japan, and explores the social and medical background of telemedicine operations, using as case studies Choongbook in Korea and Kagawa in Japan.

(2) Methodology:
I consider how many institutions demanding telemedicine refer their patients to telemedicine suppliers in the same diagnostic area or in another diagnostic area (the tertiary care level) and how social and medical background influence the geographical characteristics of telemedicine by exploring two case studies, that of Choongbook in Korea and of Kagawa in Japan respectively. Both of them are close to the metropole and aptly illustrate the present status of telemedicine.

In the case of Korea, I identify telemedicine networks through the data of the 243 medical institutions that consume telemedicine services (317 telemedicine networks) using GIS (Geographical Information System). And I conducted a face-to-face survey in order to better understand the qualitative side of telemedicine in Choongbook, interviewing administrators of and participants in the Korean medical system and residents of Choongbook. In the case of Japan, I lay out the data of the eight telemedicine suppliers and seventy-four institutions demanding telemedicine in Kagawa and focus on how many telemedicine networks are used in each region in Kagawa; and how many regions are connected by telemedicine networks in Kagawa. And I find out why institutions demanding telemedicine in Kagawa deal with telemedicine suppliers within the same diagnostic area by discussing the interview results with medical specialists at hub telemedicine suppliers, with respondents at the data center, and with residents in Kagawa.

(3) Results and Discussion:
According to results of the analysis, most of the telemedicine networks in Choongbook, Korea, tend to be centralized in the Kyunggi diagnostic area (central part of Korea). In particular, clinics or institutions demanding telemedicine in outlying areas that benefit from regional health care in general are seriously affected by the centralization of telemedicine in the Kyunggi diagnostic area. In the case of Kagawa, Japan, telemedicine networks are decentralized from the Kagawa diagnostic area (strong regionalization’s characteristic). The contrast between Korea’s and Japan’s geographical layout of medical infrastructure may be summarized as the centralization and decentralization of telemedicine networks respectively. The contrast is different original health care policies, including political objectives that were determined by each country’s social and cultural environment and the patients’ and medical workers’ knowledge of medical institutions and regional health care.

Briefly, the geographical characteristics of telemedicine in Korea and Japan can be expressed as centralization and decentralization, respectively. In that telemedicine is regarded as transforming an offline system to an online one, it can promote accessibility to and utilization of medical institutions effectively through innovative medical technologies. But the geographical characteristics of telemedicine have led to adjustments in administering medical services, and influenced the viewpoint of patients, medical staff, and so forth, more so than has the advent of new medical technologies in Korea and Japan. In other words, even though telemedicine operates in cyberspace, the practical management of telemedicine incorporates not only technological aspects but social and economic ones. For example, most of the patients in Korea prefer to receive medical treatment, in particular, secondary medical treatment, in the Kyunggi diagnostic area and the centralization of many patients in the Kyunggi diagnostic area has been considered one of the major problems before the introduction of telemedicine. Whereas, the regional-based system has been widely accepted among patients and medical staff in Japan. In the case of Japan, many local medical staff who devote themselves to regional-based health care in isolated communities and retired medical staff who are opinion leaders in regional health care, have proposed telemedicine to the central government resulting in many experiments and implementation on the basis of each diagnostic area. Finally, telemedicine is deeply associated with existing medical behaviors; therefore, the reformation of health care both online and offline in Korea and Japan is necessary for the successful practice of telemedicine.

(4) Conclusion:
Principally, even though telemedicine is operated in cyberspace, telemedicine in both Korea and Japan is influenced by geographical considerations, in other words, regionalization. But in Korea, most of the institutions demanding telemedicine in Choongbook deal with telemedicine suppliers in the Kyunggi diagnostic area in central Korea. And a considerable number of institutions demanding telemedicine across all areas of Choongbook have strong ties with telemedicine suppliers in the Kyunggi diagnostic area. In Japan, however, Kagawa serves as a hub for most of the telemedicine networks and it is difficult to identify outlying telemedicine networks from Kagawa. In the case of Kagawa, there is no regular geographical pattern, although the greater part of telemedicine networks are concentrated in urban areas. Commonly, telemedicine in Korea and Japan is influenced by the existed medical environment such as policies, the perspective of doctors and patients rather than technologies or other reasons.