MOTIVATION

Understanding human mobility from a spatial perspective is important to enable urban transport planners, human geographers, social scientists and other spatial information users to improve public transport systems and socioeconomic planning by acquiring information about transportation modes by age, gender, occupation, purposes etc. As a result of advances in wireless communication technologies and location-enabled mobile devices, nowadays we can collect, store and integrate large amounts of geospatial data including cellular network data, mobile phone log data, real-time weather information, person flow data etc. However, handling these vast amounts of data requires high-speed computational power, complex database management systems and a considerable period of time to extract, manipulate and analyze the data for end users. Conversion of these vast amounts of data into GIS-ready data sets also requires knowledge of geospatial information, techniques and practices.

DATA AND METHOD

- **Person Trip Survey (PTS)**
 - Requires to fill:
 - Age
 - Gender
 - Occupation
 - Start Place and Time
 - End Place and Time
 - Purpose
 - Mode of Transportation
 - According to start and end place, routes are identified based on transportation network (shortcut path analysis)
 - End Place & Time
 - Each person in every one min interval for one day is stored as a CSV file
- **Origin-Destination Route Identification Process**
- **Store as CSV Format**

Data Source: People Flow Project, CSIS, University of Tokyo

AVAILABLE DATA FOR ASIAN CITIES

Asian cities such as Dhaka, Hanoi, Jakarta and Manila, person trip survey data includes many individual-level variables such as gender, age group, occupation, purpose of trip etc. and it is important to visualize human mobility in terms of social behaviors, for example, the temporal distribution of women’s shopping activities, elderly people’s trip purposes and the modes of transportation they use, trip purposes by gender or occupation etc. Use of a Web service to stream high-resolution and small-scale map data from Microsoft Bing Maps eliminates the cost and data-processing time and enhances person trip data visualization processes.

PERSON TRIP DATA STRUCTURE

Example in Manila, Philippine

ACKNOWLEDGEMENTS

We would like to thank CSIS, University of Tokyo for providing Person Trip Survey data for this project.