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Abstract 

Several parameters are recognized to influence agents of deforestation's decision-making to 

deforest. Physical environment strongly influences deforestation, and in the tropics, it is evident 

that many of these parameters hinge on agricultural activities. Dzalanyama forest reserve 

designated boundary covers 93,500 hectares (ha) and with increased urban demand for charcoal, 

there are marked land cover transitions in the forest reserve. Observed trends indicate that the 

forest cover as of 1990 was 65, 775 ha of which 22,031 ha were lost by the year 2010.  

The objective of this study is therefore to derive understanding of the underlying causes of 

deforestation in Dzalanyama and estimate the future of forest cover loss. This study is further 

aimed at providing a socio-scientific basis for potential policy intervention scenarios towards 

sustainable management efforts of the forest reserve.  I describe the development of a multi-

agent simulation (MAS) to simulate the selections of cropping decisions and a competing labour 

practice (charcoal production) by smallholder farmers surrounding the forest reserve. 

The deforestation trends for Dzalanyama forest reserve were simulated over a 40-year 

period beginning the year 1990. Occupying a single grid cell (100x100m = 1ha), relocation of 

the kiln is the emergent phenomenon. It emerges from the households demand to produce 

charcoal after failing to grow enough food while where it relocates to is determined by the 

biophysical factors of distance to road, river and forest/settlement edge. The former determined 

the quantity accuracy while the latter the spatial accuracy. In the business as usual scenario (  ) 

12, 207 ha of forest were simulated as lost against 13, 639 ha observed in 2000. The quantities 

accumulate to 19, 459 ha simulated against 22, 031ha observed by the year 2010.  

From the supply end, this massive forest loss is evident in the area from the combined 

influence of: 1) the households’ inability to meet their food and/or cash requirements from 

agriculture, their main activity, due to among other factors population growth and poverty; and 
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2) the households' engagement in charcoal production (deforestation) as a coping mechanism 

against the resulting food and/or cash deficiencies of (1) above. Based on the successful 

simulation for 2000 and 2010, I predicted future forest loss for 2020 and 2030 under    and an 

increased reward from charcoal production scenario (  ).    conditions predict forest loss of 23, 

100ha by the year 2020 that accumulates to 26,721 ha in 2030.    reduces the predicted forest 

loss to 21,676 ha in 2020 and 24,060 ha in 2030.  

The individual decision-making based on household composition, availability of 

production materials (hybrid seed and organic fertilisers), access to subsidized production 

materials and access to sustainable farming methods contributes significantly to quantities of 

deforestation with road, river and forest/settlement boundary determining where exactly the 

deforestation takes place. The results in   show close similarities with forest loss trends 

observed in Dzalanyama between 1990 and 2010 and provide a good basis to predict forest cover 

for 2020 and 2030. Food deficiency in the smallholder farming system is the major driving factor 

of quantities of deforestation in Dzalanyama and the future looks bleak in the business as usual 

scenario.  

With financial resources for sustainable interventions being a major problem,    tests the 

overall influence on the deforestation levels if the charcoal production industry is allowed to 

generate finances for its own sustainable management. The critical assumption being that the 

smallholder households (just as in   ) will continue farming as their main traditional economic 

activity and not abandon the crop production and shift significantly towards charcoal production. 

The results of    show a positive and sustainable trend to control the deforestation. When 

compared to    estimates of 2020 and 2030 respectively, the accumulated forest loss decreased 

by 6 % in 2020 and 10 % in 2030. This reduction in forest loss represents an accumulated gain 

(or sustenance) of forest cover of 4 % in 2030 which can only increase in the years beyond.  
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To achieve    the study, therefore, proposes formalisation of the charcoal production 

process, which has the advantages to not only reduce deforestation as established in this study 

but also has great potential for improved revenue collection by government through a formalised 

taxation system. This has the potential of making more financial resources available to the 

charcoal producers and forestry authorities. In the end, the forestry authorities would then have 

the financial capacity to enforce further and better sustainable forest management interventions. 

Again, with more disposable cash available, the charcoal producers can then begin to invest in 

better agricultural farming practices to increase crop production or better and efficient charcoal 

production techniques to reduce wastage of fuel wood. The former would significantly reduce 

household dependency on charcoal production while the latter would imply cutting fewer trees to 

sustain the households’ needs. Either way the increased reward from charcoal production for the 

producer serves to reduce the deforestation in the long term. 

Keywords: multi-agent simulation, agent based simulation, tropical deforestation, farm-

based decision-making, computer modelling and sustainability  
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Chapter 1 

Introduction 

1.1 Purpose of the research 

Since independence, in 1964, agriculture has continued to play a central role in defining 

Malawian rural livelihoods. It employs over 85 % of the rural population, normally accounts for 

35–40 % of Gross Domestic Product (GDP), and contributes over 90 % to total export earnings 

(Government of Malawi, 2007a). Tobacco is the major export earner and contributes 

approximately 65 % of the country’s export earnings, followed by tea at 8 % and sugar at 6 %. 

Maize is the major food crop, cultivated on over 60 % of the arable land (Tchale, 2009). The 

agricultural sector in Malawi is categorized into estate agriculture sector and smallholder sector, 

with the latter accounting for 60 % of agriculture GDP (Chirwa and Matita, 2012). Recent 

estimates indicate that 55 % of smallholder farmers have less than 1 hectare of cultivatable land 

(Government of Malawi, 2002). Smallholder agriculture remains an important source of 

livelihood for a majority of the rural population. For instance, approximately 84 % of agriculture 

value-added comes from 1.8 to 2 million smallholder farmers who on average own only 1 

hectare of land (World Bank, 2003). Most smallholder farmers in Malawi still cultivate using 

hoe technology and rely heavily on family labour. Most of smallholder farming is focussed on 

producing food staples such as maize and rice. Alwang and Siegel, (1999) estimate that 70 % of 

Malawian smallholder farmers cultivate 1.0 hectare with the median area cultivated being 0.6 

hectares, and devote 70 % of the land to maize, the main staple food. Others estimate that only 

about 15 % of the maize that is produced in the country is marketed, while the rest is used to 

meet subsistence needs (Chirwa and Matita, 2012).  
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With the majority of the population living in rural areas in Malawi, both wage employment 

and chances of escaping poverty based on smallholder agriculture are currently very limited 

(Norad, 2009). High population growth continues to exert pressure on natural resources. As such 

both customary land and protected forest areas are over-exploited for firewood, timber, charcoal 

and curios, for use in homes or for sale at roadside or in towns and cities. This serves to worsen 

the state of forest cover leading to tropical deforestation such that policy makers, scientists, and 

the public are increasingly concerned. Its negative consequences include climate change, 

biodiversity loss, reduced timber supply, flooding, siltation, and soil degradation (Kaimowitz and 

Angelsen, 1998). Efforts have since been scaled up to model the questions of why, where, when, 

and how much forest is converted to other land uses. There is a plethora of models focusing 

mainly on describing how and why landholders behave the way they do, and the linkages 

between their decisions and the rest of the economy (Kaimowitz and Angelsen, 1998). However, 

those that seek to assess the linkages between the decision made by the smallholder agriculture 

landholders and deforestation in particular are limited (Munthali and Murayama, 2012). 

Kaimowitz and Angelsen, (1998) define deforestation as "situations of long term removal of 

forest cover". Many tropical activities are recognized as leading to deforestation, including 

logging, shifting cultivation, and collecting fuelwood, among others. In tropical sub-Saharan 

Africa, collecting fuelwood is the major source of deforestation. 

A wide array of simulation approaches have been employed to enhance human 

understanding of the mechanisms driving tropical deforestation, including analytical and 

statistical equation-based (differential sets or not) mathematical models such as linear 

programming. However, apart from the limited levels of complexity that can practically be built 

into them, these models have downplayed the influence of individualistic decision-making and 

social phenomena (Parker et al., 2003).  
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Tropical deforestation is a complex environmental problem often comprising several micro 

interacting spatial subsystems. For a long time, deforestation modelling has lacked an explicit 

spatial dimension largely because of its multidisciplinary and temporal dynamism, despite being 

spatial in nature. Data from remote sensing have helped to monitor dynamically changing 

systems although future estimates of such changes are hard to make. Again the nature of the 

interactions between these systems often makes it difficult to predict the outcomes that will 

result from, for instance, particular management actions and policies. Researchers have since 

utilized a variety of tools to explore the dynamics of these complex systems and the potential 

outcomes associated with proposed new policies and/or changes in the human or natural systems 

in question. Such tools, from statistical and mathematical models to geographic information 

systems (GIS) and dynamic models, have proven to be helpful in understanding complex 

geographic phenomena. Of late multi-agent simulation (MAS) techniques have been widely used 

in land-use/-cover change (LUCC) modelling with very satisfactory results (Deadman et al., 

2004; Parker et al., 2003; Wada et al., 2008). Building on their sensitivity to small individual 

changes, MASs have demonstrated great potential to magnify micro-scale decisions made at the 

individual farm level thereby exposing the trigger mechanisms of LUCC and deforestation in 

particular.  

Smallholder farmers in Malawi experience several challenges as they strive to sustain food 

production with far reaching consequences that extend beyond the agricultural frontiers. 

Consequently, sustainability of the natural resources near the smallholder communities is 

threatened. The objective of this study is to derive understanding of the underlying causes of 

deforestation in Dzalanyama and estimate the future of forest cover loss. I seek to provide a 

socio-economic and scientific basis for potential policy intervention scenarios towards 

sustainable management efforts of the forest reserve.  This study describes the development of 

MAS to simulate the selections of cropping decisions and a competing labour practice (charcoal 

production) by smallholder farmers surrounding the forest reserve. This is a simulation of the 



 

4 

 

inefficiencies of the smallholder crop production theories being practiced at the individual 

farming households and how they translate into deforestation. By capturing the smallholder 

farmers’ interactions with the land-use system and surrounding environment, this MAS research 

hopes to provide insightful and deeper understanding of the agricultural and environmental 

implications in management of land and forest resources to avoid irreversible damages caused by 

deforestation in Dzalanyama and surrounding areas. 

1.2 Structure of the research 

This dissertation is organised into six chapters. Figure 1-1 shows the research framework 

and outlines the interrelationships of the chapters.  In chapter 1, I introduce the research 

objective and a brief outline of the research structure. Chapter 2 provides the theoretical 

framework of the simulation approach chosen for this study while Chapter 3 highlights the 

situation in the study area. Chapter 4 quantifies the extent of the deforestation in Dzalanyama. 

Chapter 5 presents the data and describes the simulation approach. I then present the results and 

discuss the influence of the selections of cropping decisions and the competing labour practice 

(charcoal production) on forest loss. A summary and conclusion is then provided in Chapter 6. 

The introductory chapter (Chapter 1) is a general overview of the research. It highlights the 

existing deforestation problems, the essence of simulation for the area, the main objectives and 

simulation method adopted. 
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Figure 1-1: Research framework 

Note: The number in each box corresponds to a dissertation chapter. 
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Chapter 2 discusses the theoretical and methodological issues that are relevant to this 

research. The theoretical section discussed MAS approaches in LUCC in general. It starts with 

historical background of MAS, its structure all the way down to implementation platforms 

available. It also shades more light on the shortfalls of current multi-agent techniques in handling 

LUCC in general and tropical deforestation in particular. This discussion then lays a foundation 

for a proposed extension of LUCC MAS to tropical deforestation with a specific focus on 

simulating the individual farm-based decision-making of the smallholder farming households in 

the study area. 

Chapter 3 is a detailed presentation of the geographic, biophysical and social attributes of 

the study area. It also expounds on the problem of deforestation in Dzalanyama forest reserve by 

digging deeper into the land, labour and resource-availability challenges facing the smallholder 

farmers in Malawi and in the study area. I also discuss how charcoal production is becoming the 

easy way out for most households in case of food shortages. 

Chapter 4 is an analysis that quantifies the LUCC for the study area using multispectral 

classification, remote sensing (RS), GIS and Markov Chain analysis techniques. Multi-temporal 

RS data were used to map land-use/-cover distribution. The results of the LUCC and forest loss 

of Dzalanyama forest reserve are presented and factors influencing the forest loss discussed. 

Chapter 5 looks at the deforestation trends of Dzalanyama by simulating the individual 

farm-based decision-making of the farming households. The MAS methodology is discussed in 

detail and both the biophysical and socio-economic data sets preparations are described. In this 

chapter the results of the deforestation simulation are presented with keen observation of the 

results under the business as usual scenario and in comparison with other scenarios. This serves 

to derive understanding of the impact of the selections of cropping decisions and the competing 

labour practice (charcoal production) on forest loss and devise possible ways of curbing the same. 

Sub-section 5.5 discusses the findings of the study in relation to the research objectives.  
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Chapter 6 then summarises and concludes the research findings. The simulated results 

indicate worsening deforestation trends with huge hectares of the forest cover converted to other 

land uses. As a mitigating factor, the simulation results points to a positive influence on 

deforestation, a regularised charcoal production in the study area would have. The deforestation 

was noted to be highly influenced by existing road and river networks and more so the physical 

distance from the forest edge/settlement boundary.  
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Chapter 2 

Multi-agent simulation and LUCC modeling 

2.1 Introduction 

There is a wide array of simulation methods that mimic the mechanisms of human 

intelligence to achieve one or more objectives. Analytical simulation approaches use equations 

that explain data, while statistical ones work primarily with probabilities (Munthali, 2012). An 

iterative combination of any or both of the above uses feedback options to answer problems, 

which are too complex to be solved by one equation. Most of these equation-based mathematical 

models identify system variables, and evaluate or integrate sets of equations relating to these 

variables. A variant of such equation-based models are based on linear programming (Howitt, 

1995; Weinberg et al., 1993), and are potentially linked to GIS information (Chuvieco, 1993; 

Cromley and Hanink, 1999; Longley et al., 1994).  

However, in practice there are limited levels of complexity that can be built into these 

models (Parker et al., 2003). To incorporate complexity, sets of differential equations linked 

through intermediary functions and data structures are sometimes used to represent stocks and 

flows of information (Gilbert and Troitzsch, 1999). Although they include human and ecological 

interactions, these systemic models tend to have difficulties in accommodating spatial 

relationships (Baker, 1989; Sklar and Costanza, 1991). Apart from their power and ease of use, 

statistical simulation approaches have been widely accepted largely because they include a 

variety of regression techniques applied to space and more tailored spatial statistical methods 

(Ludeke et al., 1990; Mertens and Lambin, 1997). However, according to Parker et al., (2003), 

unless tied to theoretical frameworks, statistical models tend to down-play decision-making and 

social phenomena. Other simulation approaches express qualitative knowledge in a quantitative 
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fashion by combining expert judgement with probability techniques such as Bayesian or artificial 

intelligence approaches (Parker et al., 2003). 

The gaps and inconsistencies left by these mathematical modelling approaches saw the 

proliferation of cellular automata (CA) in combination with Markov Chain models as an 

alternative (Munthali and Murayama, 2012). In CA, each cell exists in one of a finite set of states, 

and future states depend on transition rules based on a local spatio-temporal neighbourhood 

(Kamusoko et al., 2009), while in Markov models, cell states depend probabilistically on 

temporally lagged cell state values (Munthali, 2012). These cellular models (CMs) underlie 

many LUCC studies in which Markov–CA combinations are common (Balzter et al., 1998; Li 

and Reynolds, 1997; Kamusoko et al., 2009). CMs assume that the actions of human agents are 

important, and others assume a set of agents coincident with lattice cells and use transition rules 

as proxies to decision-making, and as such they both fail to simulate decisions expressly and 

explicitly (Parker et al., 2003). In the latter case, the actor is not tied to locations and, as 

Hogeweg, (1988) observed, this introduces problems of spatial orientation to the extent that the 

intrinsic neighbourliness of CA relationships do not reflect on the actual spatial relationships. 

This highlights the main challenge faced by CMs and most of the aforementioned modelling 

approaches when it comes to incorporating individualistic human decision-making (Parker et al., 

2003). When the focus is on human actions, agents become the crucial components in the model. 

While cellular models are focused on landscapes and transitions, MASs primarily focus on 

humans and their actions. Therefore, it is not surprising to realise that a MAS is more of a 

mindset that builds on describing a system from the perspective of its constituent units than a 

technology (Munthali, 2012). 

The benefits of the MAS method over other LUCC modelling techniques can be 

summarized in that: (i) it captures emergent phenomena; (ii) it provides a natural description of a 

system; and (iii) it is flexible (Munthali and Murayama, 2012). It is clear, however, that the 
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ability of MAS to deal with emergent phenomena is what drives the other benefits (Bonabeau, 

2002). In a geographical context of level and scale, Auyung, (1998) understands ‘emergence’ as 

emergent phenomena at one level that constitute the units of interaction, or drivers of change, at 

a higher level. There is little doubt that tropical deforestation is an emergent phenomenon. It not 

only results from the sum of individual actions of smallholder farmers’ decision-making in the 

tropics, but also because of the interactions among them. It is, therefore, rather natural that MAS 

should be used to elevate human understanding of the trends in LUCC in general and tropical 

deforestation in particular. 

While I acknowledge implementation of agent-based LUCC models in other spatial units 

of analysis, for instance in using parcels and buildings (Waddell et al., 2010) and irregular 

spatial units at a cadastral scale (Jjumba and Dragi´cevi´c, 2011), this chapter's review is limited 

to applications that used grid cells as a unit of spatial analysis. This is because satellite data are 

widely available and routinely collected in tropical regions, making raster-based approaches the 

most prudent. Again, availability of statistical data based on vector representation is very limited 

in these regions (Munthali and Murayama 2012).  

There is a large body of literature discussing the application of MASs to a number of 

global environmental challenges. Agents have been used to represent several types of entities, 

including atoms, biological cells, animals, people, and organizations (Liebrand et al., 1988, 

Epstein and Axtell, 1996, Conte et al., 1997, Weiss, 1999, Janssen and Jager, 2000). A general 

review of MAS in LUCC has been provided by Parker et al., (2003). Its use has largely been an 

observation and then a simulation of human behaviour and its effects on land-use/-cover (LUC) 

on the pieces of land where humans reside. However, what happens when the actions of an agent 

in one place affect and change the LUC in another place? More concretely and specifically, what 

sorts of thresholds underlie deforestation trends caused by agents acting from a distance and how 

are they reached? This review, therefore, adds to the discussion of MASs in LUCC by exploring 
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the extent to which smallholder farming activities at farm level in rural tropical regions influence 

LUC patterns beyond agricultural boundaries, and more specifically, the deforestation of 

protected areas. I do this in the knowledge that (i) while deforestation trends in protected areas 

continue to worsen, this is happening even in areas where no significant shifts in cultivation or 

expansion of agricultural land are perceived; (ii) it has been established that a wide selection of 

the nutritive requirements for survival in smallholder households are taken directly from forested 

environments, rather than from the limited-scope agricultural activities in which the households 

are engaged (Walker 1999); and (iii) smallholder agriculture is the main activity of the majority 

of households in these areas. 

The rest of the chapter starts by presenting a brief historical background and a description 

of the mechanism of MAS in general in sub-chapter 2.2. Sub-chapter 2.3 lists a selected set of 

MAS efforts in tropical smallholder agricultural environments that attempted to develop the 

understanding of the deforestation process, either explicitly or in the context of other issues. 

Then in sub-chapter 2.4, I discuss the methodologies adopted and how they relate to cases of 

deforestation as one aspect of LUCC by expounding on the specific criterion chosen for each 

selected paper. This forms a basis for a more general discussion comparing the criteria and a 

reflection on the lessons learnt. 

2.2 Multi-agent simulation mechanism 

2.2.1 History of multi-agent simulation 

MAS can be traced back hundreds of years to discoveries that include Adam Smith’s 

invisible hand in economics, Donald Hebb’s cell assembly, and the blind watchmaker in 

Darwinian evolution (Axelrod and Cohen, 2000). In each of these early theories, simple 

individual entities interact with each other to produce new complex phenomena that seemingly 

emerge from nowhere (Heath, 2010). Newton’s reductionist philosophy (Gleick, 1987) lacked 
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tools to adequately study and understand emergent phenomena. However, when the theoretical 

and technological advances were made leading to the invention of the computer, scientists began 

building models of these complex systems and began to have a better understanding of their 

behaviour (Munthali and Murayama, 2012). The pioneering work was carried out by Alan 

Turing with the invention of the Turing machine around 1937. By replicating any mathematical 

process, the Turing machine showed that machines were capable of representing real-world 

systems (Heath, 2010). The theoretical scientific belief that machines could recreate the non-

linear systems observed in nature got a further boost when Turing and Church later developed 

the Church–Turing hypothesis. It stated that a machine could duplicate not only the functions of 

mathematics, but also the functions of nature (Levy, 1992). Premised on von Neumann’s 

heuristic use (von Neumann, 1966) these machines have since moved from theoretical ideas to 

the real computers that we are familiar with today (Heath, 2010).  

Now that computers had come to stay, the scientific focus shifted towards synthesizing the 

complexity of natural systems. Influenced by a reductionist philosophy, most scientists took a 

top-down approach (Munthali, 2012). Evidence of this is seen in early applications of artificial 

intelligence, where the focus was more on defining the rules of the appearance of intelligence 

and creating intelligent solutions than focusing on the structure that creates intelligence (Casti, 

1995). This approach was skewed towards the idea that systems are linear, and thus it failed to 

enhance our understanding of the complex non-linear systems found in nature (Langton, 1989). 

A mile stone was reached when Ulam suggested that von Neumann’s self-reproducing machine 

could be represented more easily by using CA (Langton, 1989). CA are self-operating entities 

that exist in individual cells which are adjacent to one another in a 2D space like a checkerboard, 

and have the capability to interact with the cells around them (Munthali, 2012). According to 

Heath, (2010), the influence of the CA approach was overwhelming for two reasons: (1) because 

the cells in CA act autonomously and simultaneously with other cells in the system, the 

simulation process changed from serial to parallel representation; and (2) CA systems are 
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composed of many locally controlled cells that together create global behaviour. The former was 

important because many natural systems are widely accepted to be parallel systems (von 

Neumann, 1966), while the latter led to the bottom-up approach as the CA architecture requires 

engineering a cell’s logic at the local level in the hope that it will create the desired global 

behaviour (Langton, 1989). 

After learning how to synthesise complex systems and discovering some of their properties 

using CA, complex adaptive systems (CASs) began to emerge as the direct historical roots of 

MASs (Heath, 2010; Munthali, 2012). Drawing much of its inspiration from biological systems, 

CASs were mainly concerned with how complex adaptive behaviour emerges in nature from 

interactions among autonomous agents (Dawid and Dermietzel, 2006). Much of the early work 

in defining and designing CASs resulted from work to identify properties and mechanisms that 

compose all MASs as we know them today (Buchta et al., 2003). Heath, (2010) reported the 

three main properties of CASs to be aggregation, non-linearity, which is the idea that the whole 

system output is greater than the sum of the individual component outputs, and diversity, 

meaning that agents do not all act the same way when stimulated by a set of conditions. 

It is evident that MASs emerged from the scientific search to try and understand non-linear 

systems, and this revelation suggests why MASs are a useful research tool. In summary, many 

subject areas played an important role in developing the multidisciplinary field of MASs 

(Munthali, 2012). 

2.2.2 Multi-agent simulation structure 

Parker and Meretsky, (2004) noted that MASs often model complex dynamic systems and 

focus on the macro-scale, or “emergent,” phenomena that result from the decentralised decisions 

of, and interactions between, the agents. The concept behind MASs, which was borrowed from 

the computer sciences, is to mimic human- or animal-like agents interacting at the micro-scale in 
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a computer simulation in order to study how their aggregation leads to complex macro-behaviour 

and phenomena (Berger, 2001). 

MASs build on a successful specification of the agent itself, its behaviour, the 

representation of the environment and the interactions. The term agent refers to any individual or 

group of individuals who exist in a given area and are capable of making decisions for 

themselves or for the given area (Munthali, 2012). Generally, an agent can represent any level of 

organization (a herd, a village, an institution, etc.) (Verburg,  2006). In LUCC modelling, these 

agents couple a human system making land-use decisions with an environmental system 

represented by a raster grid (Deadman et al., 2004, see Figure 2-1). 
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Figure 2-1: A conceptual framework for a farm-based decision-making MAS  

(Source: Munthali, 2012) 
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The specification of the behaviour of agents demands a proper description of the actual 

actions of the agents and the basic elements that cause modifications in their environment and in 

other agents (Bandini et al., 2009). It also demands the provision of mechanisms for the agents to 

effectively select the actions to be carried out. The mechanism of an agent refers to the internal 

structure which is responsible for the selection of actions (Russel and Norvig, 1995). The actions 

of agents pertain to descriptions of the agents’ actions, for instance state transformation, 

environmental modifications, an agent’s perception and responsiveness, and the spatial physical 

displacement of an agent in the environment (Munthali and Murayama, 2012). The description of 

the environment of an agent should, among other factors, primarily define and enforce the rules 

of behaviour of an agent, and maintain the internal dynamics of the system to avoid chaos 

(Munthali, 2012). At the same time, it should also support an agent’s perception and localised 

actions by embedding and supporting access to objects and parts of the system that are not 

necessarily modelled as agents (Bandini et al., 2009). Interaction is a key aspect in agent design, 

both with other agents and/or the environment. Several definitions of interaction have been 

provided, and most of them focus on the ability of agents to engage with the environment and 

with other agents in a meaningful problem-solving or goal-oriented scheme to achieve particular 

objectives according to the coordination, cooperation and competition practices of natural 

phenomena (Munthali and Murayama, 2012). 

These concepts have been the subject of experiments on many platforms, the choice of 

which tends to depend largely on the researcher’s preference, the computation requirements, and 

the overall objectives of the study (Munthali, 2012). Most MAS platforms follow the 

“framework and library” paradigm (Railsback et al., 2006). A framework is a set of standard 

concepts for designing and describing MASs, while a library is a set of software implementing 

the framework and providing simulation tools (Munthali, 2012). Without trying to be exhaustive, 

this section presents some of the commonly available agent modelling platforms.  
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The earliest of these platforms include the Swarm (Minar et al., 1996, www.swarm.org), 

whose libraries were written in Objective-C with later updates using Java Swarm in order to 

allow the use of Swarm’s Objective-C library in Java (Railsback et al., 2006). The recursive 

porous agent simulation toolkit (RePast) (Collier, 2000; http://repast.sourceforge.net/) was first 

developed as a Java implementation of Swarm, but has since evolved into a fully-fledged stand-

alone Java platform. MASON (Luke et al., 2005; http://cs.gmu.edu/~eclab/projects/mason/) was 

developed later, also as a Java implemented tool. Despite these platforms providing standardised 

software designs and tools without limiting the type or complexity of the models they implement, 

they have well-known limitations (Railsback et al., 2006). According to Tobias and Hofmann, 

(2004), their weaknesses include difficulty of use, insufficient tools for building models, and 

especially tools for representing space, insufficient tools for executing and observing simulation 

experiments, and a lack of tools for documenting and communicating software. The Logo family 

evolved from such limitations with the aim of providing a high-level platform that allows model 

building and learning from simple MASs (Railsback et al., 2006). Although built on elementary-

level principles primarily to aid student learning, NetLogo (http://ccl.northwestern.edu/netlogo/) 

now contains complex capabilities and is arguably the most widely used platform (Railsback et 

al., 2006). Figure 2-2 is a screenshot of a NetLogo platform that comes with its own 

programming language, which is claimed to be simpler to use than Java or Objective-C, an 

animation display automatically linked to the program, and optional graphical controls and charts 

(Munthali, 2012). 
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Figure 2-2: A NetLogo MAS platform (Source: Munthali, 2012). 
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2.3 Applications of Multi-agent simulation farm-based 

deforestation 

Smallholder agriculture continues to be the mainstay activity in many tropical regions of 

the world; however, opinions vary about its influence on deforestation. The introduction of 

monetary economies and increases in population has led to a shift to more profit-oriented 

agricultural practices and/or high demand for food in these regions. These have resulted in 

greater intensification of agricultural land use, including shorter shifting-cultivation fallow 

periods and extended cultivation periods, and in the exploitation of forested areas (Munthali and 

Murayama, 2012). However, a significant level of variability still exists in these land-use 

systems. This variation generally stems from the differing aspirations, attitudes, and resources 

among farming households (Mathews et al., 2007), such that neither population nor poverty 

alone constitutes the major underlying causes of deforestation and LUCC in general (Lambin et 

al., 2001). 

There is a well-developed set of models that formally link socioeconomic factors to land-

use allocation in a nonspatial context. The gap between descriptive analysis and nonspatial 

models has since been bridged, to an extent, by spatially explicit simulation models (Parker and 

Meretsky, 2004). Just as the empirical illustration of observed outcomes has been a sufficient 

end unto itself for MASs (Epstein, 1999), it has also been argued that it is retrogressive to limit 

the potential and appropriateness of MASs to such illustrations (Parker et al., 2003). Therefore, 

to understand how farm-based decisions influence deforestation beyond the farms, it is important 

to explore how decisions have an influence beyond agricultural boundaries. Table 2-1 presents a 

selected set of MAS efforts to improve our understanding of the influence of smallholder 

agricultural practices on deforestation. I acknowledge that the primary objective of some of the 

selected papers was not deforestation in particular but LUCC in general; however, I still opted to 

include them because (i) at the time of writing this chapter there was no known, at least as far as 
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the authors were aware, MAS work specifically tackling tropical deforestation from the 

perspective of smallholder farming practices; (ii) the selected papers touched either on tropical 

deforestation or on individual farm-based decision-making, or both; and (iii) the modelling 

approach was fully MAS (Munthali and Murayama, 2012). 
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Table 2-1: Summary description of selected review papers  

Author (s) Location Agent unit Farmer activities Objective 

Deadman et al., 

(2004) 

Altamira, 

Brazil 
Farmer household 

Colonist household 

farming 

Simulate Amazon 

deforestation trends 

Macmillan and 

Huang, (2008) 

Artificial 

society 
Farmer (s) 

Sub-commercial 

farming 

Land use change 

simulation 

Rajan and 

Shibasaki, (2000) 
Thailand 

Grid based (group 

of) individual(s) 
Shifting cultivation 

Land use change 

simulation 

Sulistywati et al., 

(2005) 
Indonesia Farmer household Swidden cultivation 

Simulate impacts of cash 

cropping in swidden 

agricultural systems 

Wada et al., 

(2007) 

Luangprabang, 

Lao PDR 
Village cluster 

Paddy shifting 

cultivation 

Simulate shifting 

cultivation trends 

Walker, (1999) Brazil 
Farming groups 

(20 persons) 

Smallholder 

rotational farming 

Description of market-

context extra-marginal 

decision-making 

(Source: Munthali and Murayama, 2012) 
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2.3.1 Problems of MAS implementations in tropical deforestation 

Underscoring the sporadic, incomplete, and mostly non-existent market context in 

smallholder agriculture, Walker, (1999) accounted for land allocation beyond the extensive 

margins of permanent agriculture. He built on the notion of peasantry, whereby smallholder 

farmers require a wide selection of natural commodities to survive and pursue cultural activities. 

Though I agree with Walker, (1999) that tropical forests are subject to the influences of 

purposeful economic activity and the implied direct occupation of forest land through shifting 

cultivation, I beg to differ on its universality and representativeness. While it may be true that, in 

the absence of a smallholder market, farmers do obtain a reasonable number of survival 

commodities from the forest (Walker, 1999), the tropical story does not end there. Peasantry 

land-use systems persist even in the face of advances in agricultural technology (Ellis, 1993), 

such that when populations grow, pressure mounts not only on the land, but also on the 

production theories involved. In the case of shifting cultivation, this pressure is eased by 

relocation, but where land is scarce, the linkages between household production theories and the 

realms of protected tropical forests need to be well articulated. So far, in these contexts of land 

scarcity, the influence on deforestation trends of the choices made in smallholder crop 

production is far less known. Walker, (1999) echoed this when he proposed a further extension 

of his model.  

Wada et al., (2007) developed a micro-scale MAS to simulate the spatial and temporal 

patterns of shifting cultivation in a mountainous region in Laos. The aim was to understand how 

shifting cultivation expands in space. Similarly, Rajan and Shibasaki, (2000) modelled how 

farmers determined types of crops, expansion or contraction of farming areas, and relocation of 

settlements, by referring to the collective household income from agricultural and non-

agricultural revenues in Thailand. While MASs can incorporate the fact that human decision-

making is heterogeneous, decentralized, and autonomous (Parker et al., 2003), the model of 

Wada et al., (2007) represents a case where individual behaviour is conspicuously less 
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heterogeneous and decentralized. In both cases, the biophysical attributes of climate, soil 

properties, and water and nutrient stresses on agricultural productivity are explicitly considered 

in the context of a farmer/agent relocating or expanding acreage. The emphasis is on the agent’s 

ability to transform each grid of land unit where it is found, on the basis of the demographic and 

biophysical conditions. First, the ability to ‘transform’ assumes among other things that (i) 

possibilities of technological intensification of agricultural practices do exist and (ii) there is still 

available land to which the farmer would relocate. Assuming that the above options are available, 

heavy land degradation in the tropics makes the influence of soil conditions and water and 

nutrient stresses on agricultural productivity insignificant as the basis of decisions on relocation. 

However, availability of these options is not guaranteed for most tropical smallholder regions. At 

least not in scenarios where family labour constitutes all of the human capital, farm 

mechanization is virtually non-existent and land is in short supply (Takane, 2008).  

Second, the emphasis is on transforming the grid of land units on which each agent exists. 

Unless otherwise explicitly stated, the overarching land use of a particular household existing on 

a particular land grid is assumed to be agricultural. This means that the agricultural activities on 

this grid have a significant role in the overall impact on behaviour. This is hinted at in the rural 

migration sub-model proposed by Rajan and Shibasaki, (2000). Here the thresholds of 

population pressure in one area influence LUCC at another, except for the facts that (i) the agent 

eventually relocates to that area and (ii) the particular grid falls into any LUC category, and not 

just forested areas. This rural migration sub-model is sufficiently accurate to represent agents 

acting at a distance if it is implemented for the individual household for which socioeconomic 

factors would either replace or complement population pressure minus the relocation aspect. 

Deadman et al., (2004) describe the results from a simulation model that explored how 

humans understand the spatial, social, and environmental components related to LUCC, and 

particularly deforestation. Based on a heuristic decision-making strategy, the authors used, 
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among others, factors such as household characteristics, burn, and soil quality, in which agent 

interaction was influenced by a labour pool. They contend that the effects of land-use decisions 

made by households affect the land cover of their plots and ultimately that of their region. It is 

evident how the plot’s land cover was affected as the colonists accumulated wealth and labour to 

increase both perennial and pasture production at the expense of annuals at the individual plot 

level. However, linkages pointing to the latter case of deforestation in the region are not so clear, 

except at the commencement of colonization when a significant portion of the land was 

deforested. Constrained availability of household labour culminated in a stabilized perennial and 

annual production simulation on the one hand and decreased pasture production and, 

subsequently, increased mature forest on the other. The resulting simulation did not, however, 

reflect the observed trends, especially in pasture production (Deadman et al., 2004). This could 

be attributed first to the implicit representation of household labour availability dynamics, in 

which households interacted through a local labour pool that excluded external labour demand 

and supply factors. Second, there is an effect of non-resilience of the model framework by which 

only pasture could be grown when a certain pH threshold is attained. As such, and depending on 

soil characteristics, many of the plots could have coincided with unfavourable conditions for 

pasture. This is notwithstanding the fact that, as technology progresses over time, the influence 

of burn and soil quality declines so much so that, in later years, such biophysical factors tend to 

be insignificant in decisions about land use. 

In an effort to consider changes in land use in the context of a single market, Macmillan 

and Huang, (2008) tackled the connected problems of production and consumption decision-

making and market interactions, with agricultural intelligent agents in a spatial context. The 

model presumes the existence of a single settlement surrounding which there is a heterogeneous 

landscape capable of supporting agriculture. In the tropics, however, agricultural activities are 

typically driven by risks and uncertainties, limited information, and, most importantly, non-profit 

goals (Schereinemachers and Berger, 2006). As a result, markets rarely influence what crops will 
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be produced. Taking this into the context of deforestation of protected areas, the landscape 

would be considered in the same way, except that the market settlement would be replaced by 

the protected area. However, instead of observing land-use changes in the agricultural setting, 

the focus would be on monitoring how land cover (forest) in the protected area changes in 

connection to the production and consumption decision-making of the smallholder farming 

which surrounds it. This is achievable because, in contrast to the highly heterogeneous landscape 

in the Macmillan and Huang, (2008) model, it is established that, without economic realizations, 

rural smallholder communities of the tropics tend to be conspicuously less heterogeneous and 

decentralized (e.g., Wada et al., 2007). This homogeneity in household activities tends to result 

in thresholds being reached even when individual changes are small and slow in nature, thereby 

leading to large-scale LUCCs including deforestation if the neighbourhood has a protected area. 

Macmillan and Huang, (2008) did propose that a production rule based on neighbourhood 

behaviour would be a more sensitive and representative approach. Though they did not 

experiment with it, it is hoped that this approach would provide valuable insights into the 

behaviour of complex systems such as these. 

Experimenting with fluctuating rubber prices in the Kalimantan regions of Indonesia, 

Sulistyawati et al., (2005) described a simulation model that studied the possible impacts of 

greater involvement of cash cropping in swidden agricultural systems. The study explicitly 

simulates the land-use decisions about the number, type, and location of swiddens geared toward 

fulfilling customary household requirements, rather than profit maximization, before tracking the 

economic consequences of this decision. While this effort points to a success story of modelling 

individual smallholder decision-making in the tropical regions, the model was based on an 

overstretched assumption. First, while they (Sulistyawati et al., 2005) acknowledge the opening 

up of the communities due to development in the region, it is surprising that the modelled 

community was assumed to be closed to the extent that population size was entirely determined 

by births and deaths. Again, globally, farm labour dynamics dictate fluctuating population sizes 
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as labour tends to be contracted from outside the community (Takane, 2008). An interesting 

factor, though, is the extent to which households prefer growing their own food first and engage 

in off-farm activities when there is no work to be done in the swiddens. Sulistyawati et al., 

(2005) explicitly incorporated rubber tapping as an income-generating activity (IGA) depending 

on the household deficits. It should be mentioned here though, that, where frontier agriculture is 

involved, these IGAs tend to include deforestation. 

2.4 Structural analysis of tropical deforestation and MAS 

2.4.1 Entities of decision-making 

LUCCs are largely due to deforestation, grazing land modifications, and agricultural 

intensification that result largely, but not exclusively, from population growth and poverty 

(Lambin et al., 2001). Though land-use systems in rural tropical regions are characterized by a 

large degree of variability, most of the population is primarily engaged in smallholder agriculture. 

The variation generally stems from differing aspirations, attitudes, and resources among farmers 

(Mathews et al., 2007), such that neither population nor poverty alone constitutes the major 

underlying cause of LUCC (Lambin et al., 2001). Instead, LUCC is a collective response to 

economic opportunities (Lambin et al., 2001). As a result, the degree of variability among 

individual farm units is exacerbated when factors such as markets and policies are incorporated 

into the models. 

It is unclear how representative the assumptions of Lambin et al., (2001) are for 

smallholder farm households in the tropics, given that these households’ activities are typically 

driven by risks and uncertainties, limited information, and, most importantly, non-profit goals 

(Schereinemachers and Berger, 2006). This is in contrast to farms in temperate areas, which have 

more information and opportunities and an overall aim to maximize profits. 
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Without such economic realizations, rural smallholder communities of the tropics tend to 

be conspicuously less heterogeneous and decentralized (e.g., Wada et al., 2007). Much of the 

simulated variability, however, depends on data availability. For instance, decision-making at the 

village level would provide the most variability in the Laotian context, but the model proposed 

by Wada et al., (2007) used a cluster of villages to define the ‘agent’, owing to a lack of data at 

the village level. Such data limitations are important even when statistical quantification, rather 

than the spatial distribution, of deforestation is the main focus. Despite the fact that it was 

averaged across the variation of the individual agents (villages), the model of Wada et al., (2007) 

accounted reasonably well for the spatial patterns of shifting cultivation at the village scale. 

Agents in a simulation represent the individual or collection of entities that make land-use 

decisions. In most models, including the LUCITA model (see Deadman et al., 2004), these 

decisions are confined to the pieces of land owned by the households. Although the uses for the 

individual plots within a household vary, the overarching land use of a particular household is 

assumed to be agricultural unless it is subdivided, as in the LUCITA model. To understand how 

these farm-based decisions influence deforestation and LUCC beyond the farms, it is important 

to explore how they extend onto adjacent forested areas. This observation prompts scrutiny of 

the labour requirements, social and nonmonetary influences, and land availability in the 

smallholder system, and how they relate to the chosen decision-making entity. The overall 

production of a tropical smallholder farmer household does not appear to be influenced by 

whether the household is primarily female or male (Takane, 2008). However, household age and 

size, especially when the population is predominantly young, requires further consideration. 

The second dimension is to incorporate social (nonmonetary) influences on decision-

making into the modelling framework (Kohler et al., 2000). For example, Evans and Kelley, 

(2004) MAS approach incorporated education level as an important nonmonetary factor in land-

use decision-making. Izquierdo et al., (2003) reached similar conclusions when they explored the 
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influence of social approval on adopting farming techniques. However, it is important that 

modellers should be cognizant of the fact that farmers in the developing world generally use 

relatively simple rules, guided by rational principles, to satisfy their needs (Simon, 1957). As in 

Becu et al., (2003), Balmann, (1997), and Berger, (2001) focused on several hypothesized 

sources of inefficiency, including a lack of physical infrastructure, failing institutions, market 

imperfections, and limited information flows (Schereinemachers and Berger, 2006). While all 

these have clear policy relevance and may be addressed through policy interventions, they are 

external to the farmer as a decision maker. As such, these models are far from being able to 

identify the individual influence of the farmer’s cognitive capacity as a decision maker. Worse 

still, in tropical regions, farm households do not perform complex algebra to make optimal 

decisions (Schereinemachers and Berger, 2006). 

Coupled with the uncertainties of natural phenomena, and as the growing season 

progresses, the smallholder requirements of many households tend to be supplemented by off-

farm activities. Faced with land scarcity, adaptation of the agricultural system to increase yield is 

an obvious alternative (Guyer, 1997). However, for a smallholder farmer in rural tropical areas, 

increasing commercial output is not easy, and as a result these farmers tend to seek off-farm 

employment (see Sulistyawati et al., 2005). In doing so, the agricultural smallholder sector 

suffers, the agricultural system fails to adapt, and more pressure is placed on the already scarce 

land and forest resources. 

Further explorations of the spatial patterns of land-use changes in rural tropical areas 

should consider the social bonds existing among the farmers. These bonds tend to guide the 

household activities in a relatively homogeneous way, as evidenced by the Laotian example, 

where individual households are strongly embedded in their local village communities (Wada et 

al., 2007). Scheffer and Carpenter, (2003) pointed out that slow and small changes such as these 
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can result in thresholds being crossed, leading to large-scale changes in land-use patterns. The 

unpredictability of such radical changes often leads to counter-intuitive outcomes (Lynam, 2002). 

2.4.2 Representation of decision-making 

Manson, (2001) emphasized that feedback mechanisms are important to an understanding 

of the deterministic nature of complex phenomena, such as deforestation. This stems from the 

realization that the analytical modelling approaches used so far assume a unidirectional process 

between driving factors and impacts. However, in reality, the influence of land-use change may 

alter future land use as a consequence of feedbacks (Verburg, 2006). This realization is different 

from the path-dependent dynamic modelling approach in which land-use change at time    

depends on the earlier land use at time    (Manson, 2001). 

Lambin et al., (2003) observe that at all spatial (local, regional, or global) and temporal 

(direct or indirect) scales, the influence of feedback processes can be to either dampen or amplify 

the effects. Despite some simplifying assumptions, Verburg, (2006) presents a simulation of a 

combined land-use change and erosion/sedimentation model that dynamically linked feedbacks 

between land-use decisions and landscape processes. The patterns of land-use change were 

clearly influenced by the inclusion of feedbacks: for example, patterns of land abandonment 

were found in places where there was severe gully erosion (Verburg, 2006). 

However, traditional research methods have not been designed for synchronous analysis at 

multiple scales (Overmars and Verburg, 2006). The general solution has been to structure models 

using either a top-down or a bottom-up approach in which aggregate regional factors constrain 

system changes. From that position, proximate decision makers calculate changes influenced by 

both local and regional conditions. Though boundaries between top-down and bottom-up 

approaches have been drawn, strict adherence to one or the other does not allow for explicit 

inclusion of feedbacks when determining the location and rate of system changes. Greene, 

(2000) hypothesized that simultaneous regression provides a platform to include feedbacks, as 
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discussed by Verburg, (2006), limiting spatially explicit information to world regions or other 

large administrative units. Similar scenarios that consider the costs and benefits of modelling the 

interactions between local and region factors, using either hierarchy or feedback modelling, 

abound in tropical developing regions (see Deadman et al., 2004, Wada et al., 2007). 

While most modelling approaches are aimed at assessing deforestation patterns and their 

associated impacts, it is noted that the decisions concerning land use are made by agents (e.g., 

land owners, government agencies, or other institutions). In many of these approaches, the unit 

of analysis is a piece of land where land-use changes are calculated in order to produce spatial 

maps. The disadvantage of these land-based approaches is a poor match with the agents of land-

use change. It can be argued that individual farmers are not explicitly represented when the units 

of simulation do not match the units of decision-making (Verburg, 2006). MASs have emerged 

as an alternative to simple, highly abstract models, and have successfully simulated both 

individualistic and collective behaviour in land-use decision-making (see Evans and Kelley, 

2004, Ligtenberg et al., 2004, Parker and Meretsky, 2004). However, it is difficult to adequately 

represent agent behaviour and link it to the actual deforestation. Despite their strength in 

describing and exploring decision-making, MASs may inadequately represent spatial patterns of 

tropical deforestation due to the difficulty in representing feedbacks between agents’ behaviour 

and forest units. 

Incorporating feedback is further complicated by time dependency change factors, which 

can create feedback into the system, causing significant changes. In computer simulations, this 

time dependency directly influences the computational time and efficient use of computer 

resources when using MAS. Using a 10-year (1980–1990) time span, Rajan and Shibasaki, 

(2000) obtained satisfactory results in simulating LUCCs, just as Prasad et al., (2001) did when 

running a 70-year (1960–2030) simulation. As discussed by Evans and Kelley, (2004), the 

temporal extent of a simulation relates directly to the temporal resolution at which the model 
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runs; higher temporal resolution is achieved at the expense of the spatial resolution that can be 

achieved. In addition, in tropical regions, a lack of available data compounds the problem. 

2.4.3 Implementation of decision-making 

The preceding argument has highlighted the shortfalls in the understanding of the actual 

processes operating at the individual decision-making level and how the descriptive and 

explanatory approaches of MAS influence model results. However, the spatial context in which 

these entities interact is equally important. MASs must be coupled with a cellular component to 

represent the landscape in which individual farms are located in space and time (Parker et al., 

2003, Ligtenberg et al., 2004, Manson, 2005). Balmann, (1997) observed that similarities 

between the agricultural entity of concern and CAs should be identified before such a framework 

is adapted to the assumptions of tropical deforestation. Balmann, (1997) identified four main 

characteristics of CAs: (i) they consist of a spatially discrete and regular n-dimensional set of 

identical cells; (ii) each cell can only be in a finite number of states; (iii) the states of the cells are 

computed simultaneously by a deterministic rule that consists of a finite number of discrete 

computations; and (iv) the computation rule only considers the local history of the cell and its 

neighbors. In land-use modelling, the cell states tend to represent particular land ‘quality’ 

interpretations, any one of which determines the activities of the particular land use (Balmann, 

1997). It should be noted that spatial locations determine the types of activity in which the farm 

household would engage (Berger, 2001). It has been demonstrated that computer simulations 

combining MAS (for the individual farm/households) and CAs (for the temporal and spatial 

components of the landscape) provide a good insight into the individual activities that have a 

significant influence on deforestation trends at the macro level. It is hard to imagine that the 

pixel approach of CAs represents the agents of land-use decision-making (Couclelis, 2001). 

However, Verburg, (2006) observes that if the actual links that people have with the land are 

known, then direct links between the decision-making entities and the spatial entities of 

simulation are achievable. 



 

32 

 

There are two broad categories of the agent decision-making architecture that have been 

tested and widely accepted: optimizing and heuristic agents. The key difference between these is 

that heuristic agents have neither the information to compare all feasible alternatives nor the 

‘computational’ power to select the optimum (Schereinemachers and Berger, 2006). Heuristic 

agents build on relatively simple rules of a search process guided by rational principles (Simon, 

1957). Optimizing agents rely on the ability to process large amounts of information on all 

feasible alternatives, and always select the best one (Schereinemachers and Berger, 2006). The 

intuitive nature of heuristics makes them more transparent and therefore easy to validate. 

However, constructing a decision tree that is representative of the human thought process is not 

easy (Schereinemachers and Berger, 2006). The critical component in the heuristic approach is 

identifying not only the most important decisions but also the correct sequence in which they are 

taken (Schereinemachers and Berger, 2006). Furthermore, appropriate conditions (e.g., saturation 

levels) need to be set: for example, determining how much is ‘enough’ money and labour and 

how the decision tree is to be parameterized (Schereinemachers and Berger, 2006).  

A variety of optimization approaches are available, but the most common ones include 

mathematical (see Balmann, 1997, Berger, 2001, Becu et al., 2003) and genetic (see Manson, 

2005) programming. Mathematical programming (MP) is a computerized search for a 

combination of decisions that yields the highest objective function value (Schereinemachers and 

Berger, 2006). As opposed to the heuristic approach, MP requires the explicit specification of an 

objective function. In LUCC and deforestation modelling, objectives of agents, which include 

income, food, and leisure time, tend to be similar for both MP and heuristic approaches.  

While the complexity of the architectural building blocks of agents varies, consumption is 

most important in the tropical regions because farm households consume a substantial amount of 

their own crop and livestock. Consumption dynamics should therefore be considered explicitly 

(Schereinemachers and Berger, 2006, Cabrera et al., 2010). Sadoulet and de Janvry, (1995) and 
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Huang and Lin, (2000) suggest that such consumption functions can be statistically estimated 

from household budget data, because they quantify relationships between expenditure and 

income, prices, and household characteristics. Most of these consumption functions, as opposed 

to production functions, can be specified as minimum consumption levels in relation to 

household size (see Deadman et al., 2004, Huigen, 2004). Micro-economically, consumption and 

production decisions in tropical developing regions cannot be separated, because market goods 

cannot be fully substituted for home-produced goods. More especially when the markets are 

imperfect or decision-making is subject to high levels of risk (Sadoulet and de Janvry, 1995). As 

noted by Cabrera et al., (2010), the method of decision-making alters land-use trajectories and 

overall landscape dynamics, but these effects may not be apparent during the design or testing of 

the model. 
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Chapter 3 

Background 

3.1 Study Area 

Dzalanyama forest reserve is located to the south west of Malawi's capital district of 

Lilongwe (see Figure 3-1). It was declared a forest reserve in 1922 with some parts of it being 

shared and bordered by the districts of Mchinji and Dedza and the whole of its western border 

forming the national boundary between Malawi and Mozambique (Munthali and Murayama, 

2011). It is some 60km from the capital’s city centre and lies between latitudes 14.18° and 

14.61° S and longitudes 33.35° and 33.92° E. Sitting on a range of hills bearing the same name, 

Dzalanyama forest reserve covers approximately 935 km
2

 of land. And while the local name 

Dzalanyama means “full of wild animals” the story is different lately due to poaching. Game life 

in the reserve has deteriorated such that as of present only monkeys, rabbits, and deer exists 

though it still boasts of a vast variety of natural forest cover with a little exotic breeds introduced 

on its commercial plantations (Government of Malawi, 2006).  Biophysically, the reserve 

overlooks the Lilongwe plains and it rises between 1100 to 1659m above sea level (see Figure 3-

1 and 3-3). 

Situated in the capital district the study area is easily accessible. Availability and the ease 

with which both primary and secondary data for the activities could be sourced made modelling 

deforestation of the reserve attainable. It also represents a typical case of the dynamic and 

complex relationship among the activities of the smallholder agriculture-based rural 

communities in Malawi, the urban socio-political influences and sustainable management of 

natural resources. While the activities may be specific to the study area, the basic interactions 

and subsequent impacts are endemic to most protected areas in Malawi. As such, choice of the 
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study area will serve to address not only deforestation of Dzalanyama but also act as a template 

in other forest reserves.  
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Figure 3-1: Study area 
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There are several stakeholders involved with the welfare of Dzalanyama Forest reserve 

including the Department of Forestry (DoF) falling under the Ministry of Lands, Natural 

Resources and the Environment of the Malawi Government. However, my focus will be on the 

agricultural activities and operations involved in the areas immediately surrounding the reserve 

for reasons I will explain shortly. There are five Extension Planning Areas (EPAs) that directly 

border the forest reserve, namely: Ming'ong'o, Malingunde, Thawale, Chafumbwa and Msitu 

(see Figure 3-1). An EPA is an agricultural administrative unit that implements central 

government agricultural policies through provision of good farming methods to households on a 

one-on-one visitation basis (extension services). An extension service is the transfer of 

knowledge from researchers to farmers carried out by extension workers (EWs). EWs are 

therefore, mandated to advise farmers on their decision-making and stimulate desirable 

agricultural developments by providing informal education to farmers through meetings, 

demonstrations and field days. As such EWs require necessary orientation and facilities in 

technical knowledge, farming skills, economic analysis, research procedures and communication 

abilities. Under the Ministry of Agriculture all the named EPAs fall in one Agricultural 

Development Division (ADD) which is Lilongwe except for Msitu that falls under Kasungu 

ADD. All the agricultural technical details trickle through the ADD, which means Msitu has a 

separate technical line of command from the rest of the EPAs.  

On the other hand, due to decentralisation, all the administrative activities are done at 

district assembly level, through the Local Government ministry. This means the first three of the 

named EPAs fall under the same District Assembly, Lilongwe, while Chafumbwa EPA belongs 

to Dedza Town Assembly and Msitu EPA belongs to Mchinji Town Assembly (see Figures 3-1). 

The study area falls in Traditional Authorities Masula and Masumbankhunda where the Chewa 

people are the dominant ethnic group and trace their ancestral roots to the first Bantu-speaking 

‘Maravi’ who migrated into Malawi some Two thousand years ago (Bryceson 2006). Chichewa 

is the common language in the area and both matrilineal and patrilineal cultural marriage 
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systems are in existence. The organizational structure at district level and how the ADDs fit into 

the picture is shown in Figure 3-2 followed by a picture depicting some graphical representation 

of the study area (Figure 3-3). 
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Figure 3-2: District/Town Assembly organizational structure 
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Figure 3-3: The top images show a typical village setup (left) and a hoe-prepared farm plot 

(right). The bottom images are a view of Dzalanyama hills (left) and a stream flow with 

Brachystegias (Miombo) trees on its banks in the forest reserve 
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While the technical and administrative overlap gets sorted, I chose to focus on Ming'ong'o, 

Malingunde and Thawale EPAs for the reasons that: a) they all belong to the same district 

assembly and ADD which is Lilongwe; b) they cover the longest combined border stretch with 

the forest reserve (see Figure 3-1); and c) because of reason (a) above data collection for the 

modelling process was not only cheap but also easy to trace with Lilongwe being the capital 

district of Malawi. The average land holding size is as shown in Table 3-1 for the three chosen 

EPAs. In Table 3-2, a short summary of the field household data collected in 2011 and 2012 is 

presented. It is evident that a substantial majority of the total arable land is under smallholder 

farming system and there is almost no mechanization. Again, the decline in total arable land per 

household is noticeable where it averages just below a hectare in 2012 from slightly over a 

hectare around 2006. 
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Table 3-1: Average land holding size for Thawale, Ming'ong'o and Malingunde EPAs 

EPA 

Total 

Farm 

Families 

Total 

Smallholder 

Arable land 

(ha) 

Average 

land 

Holding 

size (ha) Sections* 

Extension 

workers**  

Extension 

services 

Ratio*** 

Thawale 18,665 25,000 1.34 8 5 (16) 1:3733 (1:1167) 

Ming'ong'o 22,667 30,766 1.36 15 12 (30) 1:1889 (1:756) 

Malingunde 18,282 19,667 1.08 12 9 (24) 1:2031 (1:761) 

* See Figure 3-3 
**Number of extension workers as of 2011 (recommended) 

***Extension worker-to-farm family ratio as of 2011 (recommended) 

(Source: Government of Malawi, 2006 and Malasa D., personal communication, 14 April 

2011) 

 

Table 3-2: Descriptive summary statistics of field survey data collected (land is in hectares) 

Household characteristic  Minimum Maximum Mean Std. Deviation 

Household size (incl. children) 1 12 4.39 1.72 

Children less than 15years 0 9 2.12 1.36 

Children older than 15 0 8 0.49 0.89 

Total arable land 0.20 7.69 0.97 0.55 

Land allocated to Maize 0.00 4.45 0.59 0.32 

Land allocated to Ground nuts 0.00 2.43 0.32 0.25 

Land allocated to Tobacco 0.00 1.21 0.015 0.08 

Land allocated to Soya Bean 0.00 0.81 0.022 0.07 

Land allocated to Cassava 0.00 0.40 0.002 0.02 

Land allocated to Sweet potato 0.00 0.81 0.020 0.072 

Land allocated to other crops 0.00 0.40 0.003 0.024 
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3.1.1 Field survey 

To understand the household activities further, a field survey was conducted in April 2011 

and January 2012 where 3,533 households were interviewed. The households were selected from 

12 sections of Malingunde EPA with each section contributing at least 290 random households. 

The following socio-economic data were collected: household size; total land under cultivation; 

total land under maize (corn) cultivation; land under other crops; annual total maize yield (food); 

access to production materials (hybrid seed and organic fertilizers); estimated annual income; 

access to good farming methods; IGAs that the households engage in apart from cultivating their 

land; labour and land availability; soil condition; and educational level of the head of household. 

Most of the households have four or more members (Table 3-2), and illiteracy levels are 

very high with most respondents unable to read or write. All households depended on family 

labour to produce crops on the pieces of land, which most of them claimed were sufficient for 

their production provided all production resources were available.  Almost all households grow 

maize as a staple food in conjunction with varying combinations of cash crops that include 

ground nuts, sweet potatoes, soybeans, tobacco, and cassava. 74 % of those interviewed could 

not produce enough food for their households during the past couple of years due to lack of 

access to: 1) production materials (cash unavailability); 2) subsidized production materials from 

central government; and 3) good farming methods (extension services). 64 % of those that failed 

to produce enough food engaged in off-farm non-agricultural activities to supplement food 

requirements for their households. 

The mean household size of the data collected is 4.4 persons (Table 3-2), requiring 792 kg 

of maize to feed itself per year (Malasa D., personal communication, 14 April 2011). The land 

that the households allocated to food production averaged 0.59 ha. According to production 

estimates of the 2010 growing season this hectarage can produce at best 2,700 kg of maize 

provided there is availability of production materials and at worst only 500 kg (Malasa D., 
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personal communication, 14 April 2011). With most households lacking crop production 

materials it is not surprising that most of the households failed and continues to fail to produce 

enough food to sustain their households. The average total land per household (0.97 ha) is higher 

than the average allocated to food production (0.59 ha). One would, therefore, expect an 

adjustment in the crop distribution to allocate more land to food production. However, the field 

survey revealed that the crop combinations rarely change at the end of the cropping year. As 

such, despite having room to expand the land allocated to food production to compensate for the 

low production due to lack of materials, the households continue to disadvantage themselves 

year in, year out. The poor crop markets do not help to rescue the households as the cash crops 

cannot fetch enough to cover the food and cash deficits. 

3.2 Smallholder farming in Malawi: the challenges 

It is evident that agriculture determines the pace and direction of overall economic growth 

for Malawi. Operating under low-input rain-fed system the country’s economic performance thus 

depends largely on how its smallholder farmers perform (Tchale, 2009). Malawi’s agricultural 

productivity, particularly among the majority of the smallholder farmers, has however fallen a 

long way below its potential given the available technology. For example, local maize and 

Burley tobacco yields have rarely reached 1.5 tonnes per hectare (Tchale, 2009). This is 

substantiated by the 74 % of the respondents who could not produce enough food in the field 

survey.  

However enhancing agricultural productivity is very difficult for most farming households 

where vast numbers of the households live in exceptionally high-risk environments in which 

basic survival is a day-to-day uncertainty. Commercial maize production has become 

increasingly unremunerative for smallholder farmers, other than those producing on a large scale 

with adequate capital to buy fertilisers (Levy et al., 2004). Farming households are failing to 

achieve their households’ basic food security from their small plots (Bryceson, 2006). As of 
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2002 the per capita maize production was on average 49 kg for the ultra-poor, 63 kg for the poor 

and 116 kg for the non-poor, all falling short of the average 155 kg minimum staple food 

requirement, and leaving even the non-poor in a deficit position (World Food Program, 2002; 

Government of Malawi, 2007b).  

Mvula et al., (2003) identifies three main rural categories based on household level of food 

deficiency: the 'well-to-do' who have food stocks that on average last eight to nine months of the 

year, the ‘a bit well-to-do' who have food sufficient to cover four to six months, and finally the 

‘have-nots’ who usually have less than one hectare of land and harvest only one to two months 

of their household’s food supply needs (Bryceson, 2006; Mvula et al., 3003). While everyone’s 

food security has deteriorated, the latter group have experienced the most precipitous slide 

downwards (Bryceson, 2006). A detailed survey by Peters, (2006) found that the poorest 

households were reducing the proportion of their maize harvest that they sold to conserve 

household food stocks. However, their extremely low level of food output necessitated the 

purchase of maize in rural markets where the government-owned Agricultural Development and 

Marketing Corporation’s (ADMARC) role as a price stabiliser is/was declining making them 

more vulnerable. 

Malawi’s agricultural productivity is therefore under threat. The 2008 Population Census 

estimated the country’s population at 13.1 million and growing at 2.8 % per annum, possibly 

doubling by 2025 (Government of Malawi, 2008). This puts enormous pressure on agriculture to 

grow at levels sufficient to feed the growing population. I discuss the dynamics of the factors 

that would enhance agricultural production in the name of availability of sufficient labour, land 

and agricultural production materials and how they together intertwine to exacerbate the food 

security problems for smallholder households in rural Malawi. 
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3.2.1 Labour 

Households’ reliance on casual labour has grown so much resulting largely from the fact 

that the households' livelihood strategies revolve around the need to obtain food on a day-by-day 

basis. Labour is, therefore, a key asset for smallholder households in rural Malawi. The quality 

and quantity of labour available to the household in terms of numbers, educational level, skills, 

and health constitute the human capital. This, then, becomes the basis for constructing household 

livelihood strategies (Takane, 2008) that are essential in enhancing the agricultural productivity. 

Ganyu is a short duration casual labour contract for unskilled work paid in cash or kind (Takane 

2008; Whiteside 2000). It, according to Bryceson, (2006) and Takane, (2008), comes in forms 

that include: kontalakiti (contract), seasonal labour performed on a nearby or far more distant 

farm; casual ganyu labour on the commercial estates, especially the tobacco estates; ganyu 

labour to alleviate famine distress involving agricultural or non-agricultural work; and ganyu 

labour performed by children for their own or parents’ economic benefit.  

As population grew, labour supply began to outstrip demand reducing the bargaining 

power of ganyu workers with respect to wage levels and the nature of work tasks demanded. The 

growing prevalence of HIV/AIDS compounded by occasional famine reinforced this tendency by 

limiting the number of people who were able to employ ganyu labour (Bryceson, 2006). The 

removal of the fertiliser subsidy in the early 1990s, when Malawi government ceded to World 

Bank pressure, caused smallholder farmers to drastically reduce their improved input usage. This 

caused maize productivity to decline and shift smallholder allocation of labour from their family 

farms to larger farms producing at scale, or to non-agricultural activities (Bryceson, 2006). As a 

consequence of the sub-optimal labour inputs, productivity on smallholdings further decreased 

(Edriss et al., 2004).  

Still more Ganyu labour remains important in rural Malawi for two main reasons: i) it 

provides supplementary labour to labour deficient households, due to HIV/AIDs related issues 
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that has led to high numbers of female/children headed households; and ii) it provides a ready 

sustainable way of obtaining food when households' food supplies ran out. It interrelates with the 

high risks in agricultural production and the problem of food deficit, and provides a means for 

risk sharing for the employers and food security for the labourers (Takane, 2008). To the 

majority of the rural households, therefore, ganyu labour has become a way of life, but one that 

exacerbates rather than solves the household’s food production constraints (Bryceson, 2006). 

This is the case because both opportunities and necessity of ganyu increase during the rainy 

season. The opportunities arise from the increased agricultural activities as the cropping season 

begins. It becomes a necessity because this is the time in which most households are worst hit by 

food deficiency after depleting their food reserves. The overall effect during this season is labour 

allocation dilemma for ganyu labourers. Trying to satisfy their immediate need for food, they are 

forced by circumstances to do ganyu labour at the critical time when they should be preparing, 

planting and weeding their own fields (Bryceson, 2006). In doing so, they are likely to 

exacerbate their future food deficiency. Being a rain fed agricultural production system, planting 

late has serious consequences on output. Even then, poor households do not have much of a 

choice but plant late because they must first do ganyu to earn enough cash to buy production 

materials. Some employers allow their labourers to work on their own fields in a timely fashion. 

However, this benevolence is counteracted by the rising population dependent on ganyu for an 

increasing portion of their livelihood, which is becoming an entrenched feature of many local 

rural economies in Malawi.  

There is a widening gulf between the shrinking number in rural Malawi who can afford to 

hire ganyu labour and the expanding number who sought ganyu labour so much so that Ganyu 

has been an integral part of deepening rural impoverishment over the past 15 years (Bryceson, 

2006). Most ganyu labour is performed by smallholders for other smallholders with most 

villages having at least one better-off farmer who hires ganyu: hiring between 2 to 20 labourers 

often for two to three times a week for several months (Pearce et al., 1996). Meanwhile the terms 
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of ganyu contracts have been worsening with Edriss et al., (2004) and Takane, (2008) reporting 

that real wages have declined significantly in the past couple of decades. 

In terms of gender, Takane, (2008) reports that female-headed households are more likely 

to engage in agricultural wage labour (ganyu) than male-headed households. However, though 

women are just as equally involved in ganyu as men, there are large gender differentials in 

remuneration. Men reportedly tend to earn twice as much as women of the daily piecework rates 

(Whiteside, 1998). These differentials are locally justified in that: i) men put in a full day’s work 

whereas women are distracted by domestic duties; ii) besides attitudinal differences regarding 

the value of female labour, there is the very real issue of need for cash from women. And with 

their lack of other income sources, women's opportunity costs of their labour are significantly 

lowered; and iii) women are restricted to ganyu work close to their homes whereas men venture 

into farther distances thereby increasing their chances of finding higher wage levels (Bryceson, 

2006; Chipande, 1987). These factors lead female-headed households into a vicious cycle in that 

maize production per hectare, for instance, for female headed households tends to be low due to 

low fertiliser use (lack of cash to buy) compared to the male headed households. As a result this 

low maize production forces the female headed households to seek other means of income which 

are in essence non-existent making them go back to the low paying ganyu. In addition and for 

similar reasons female headed households tend to avoid growing labour-intensive cash crops 

such as tobacco which would fetch more income for the livelihoods of the households (Takane, 

2008). 

Traditionally women and youth work as unpaid family labour in household agricultural 

production. Much in the way that their husbands expect them to work unpaid on the family farm, 

now women expect their children to do ganyu labour to contribute to household income 

(Bryceson, 2006). This expectation from the mothers is not strange as traditionally children have 

always helped with the household workload doing domestic labour, cultivating the family 
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agricultural fields as well as doing household-based crafts like weaving and rope-making without 

expecting any remuneration. As such women see their off springs as economic dependants who 

should be helping them to earn ganyu income, rather than doing ganyu on their own account. 

However, as Bryceson, (2006) notes teenage estrangement is thwarting this traditional ideal of a 

collective rural smallholder household labour effort with modern youth increasingly unwilling to 

do so. She attributes this trend of events to the introduction of free primary education in the mid-

1990s. Though it was an extremely positive development, the free primary education tends to 

serve as a communication barrier between the younger children generation and parent generation. 

This is largely because with the free primary education the rural youth are already better 

educated than their parents. On top of that there is the issue of human rights that came with the 

introduction of multiparty democracy in 1992. At village level, many older people equate human 

rights with the perceived individualistic behaviour of the youth at the expense of age-old moral 

values of the collective community (Bryceson, 2006). This literary revelation is made worse 

when you consider that the field survey for the study area showed that 60 % of the total 

population for the 3533 households surveyed is comprised of children of which 81 % are aged 15 

or below. However, only 30 % of the households are female-headed. 

In this context where farm mechanization is virtually non-existent all farm work is done 

manually. As such having access to necessary labour for agricultural production, therefore, 

directly affects the levels of household farm income. This is the case in that in addition to 

working on a household’s own farm, labour may also be deployed in off-farm economic 

activities, thus providing additional income to the household (Takane, 2008). 

3.2.2 Land 

The importance of family labour in farm work and the lack of mechanization in 

agricultural production imply that the availability of family labour is a prerequisite for a 

household to increase farm size. However, the increase in farm size using abundant family 
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labour is possible only under the condition that land is readily available for the expansion of a 

family’s farm. This is not always the case in most of rural Malawi today, because increasing 

population pressure on the land has considerably reduced the scope of farm expansion onto 

uncultivated land (Takane, 2008).  

Like other countries in sub-Saharan Africa, Malawi’s soils have been depleted of essential 

nutrients as a result of increased pressure on land and insufficient inputs (Tchale, 2009). A study 

conducted by Smaling in 1998 indicated that Malawi’s soils lose on average 40.0, 6.6 and 32.2 

kg per hectare per year of nitrogen (N), phosphorus (P) and potassium (K), respectively. Apart 

from declining soil fertility, Malawi’s land holding sizes, especially in the smallholder sector, are 

also declining. As shown in Tables 3-1 and 3-2, the average total arable land per farm household 

reduced by at least 0.1ha between 2006 and 2012. According to the Malawi Poverty and 

Vulnerability Assessment report (Government of Malawi, 2007b), over 90 % of the total 

agricultural value-added comes from about 1.8 million smallholders who own, on average, less 

than 1.0 ha of land. Land pressure is particularly intense in the southern region of Malawi where 

the per capita average landholding size can be as low as 0.1 ha, whereas the average per capita 

landholding size in the other regions is 0.2 ha and more (Tchale, 2009). 

3.2.3 Other resources 

Generally land and labour availability are limiting factors to agricultural production for 

most households in Malawi. It is evident from the literature and field survey that land is a scarce 

resource in the study area (see Table 3-1 and 3-2). Minus the factors discussed in section 3.2.1 

and 3.2.2, the yield stagnation and fluctuations can, therefore, be attributed to factors such as low 

adoption and less intensive use of productive agricultural technologies, unreliable rainfall, 

production inefficiencies (lack of production materials) and poor soils.  

Most households surveyed in the study area expressed satisfaction with the amount of land, 

family labour they have, and the condition of their soils for agricultural purposes. 74 % of the 
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households surveyed that could not produce enough listed lack of access to production materials, 

no access to farm input subsidy program (FISP) from central government, and lack of good and 

modern farming techniques. The former two directly relate to the overdependence on the 

declining economic returns from Ganyu labour as per the highlighted issues in section 3.2.1 

above while the latter relates to inadequate capacity by the agricultural ministry to educate the 

smallholder households on new farming techniques. This is especially in the form of under-

staffing of EPAs. For instance, Malingunde EPA has twelve sections with each section supposed 

to have at least 2 extension workers. However, as of January 2012 each of these 12 sections only 

has one extension worker putting the ratio of extension worker-to-farm household at 1:1488 

instead of at least 1:744. Apart from the issue of under-staffing these EPAs are also heavily 

under-funded limiting further their potential to reach out to more smallholder households 

(Malasa D., personal communication, 14 April 2011). On top of that, these extension workers 

often lack the necessary orientation and facilities in technical knowledge, farming skills, 

economic analysis, research procedures and communication abilities (Mobarak et al., 2012).  

3.3 Charcoal production in Malawi 

As established in section 3.2 above, the smallholder agriculture sector is struggling to 

sustain the households’ subsistence requirements. Households are then being forced to seek off-

farm non-agricultural economic activities to supplement their requirements. Many of the IGAs 

that are environmentally sustainable require substantial capital injections. This makes them out 

of reach for most of the rural households forcing them to resort to engaging in environmentally 

unsustainable activities. In the study area these activities include brick burning, firewood 

collection, tobacco curing and charcoal production. The common and environmentally 

detrimental to the forest reserve is charcoal production (see Figure 3-4). Heavily dependent on 

forest resources, these activities have negatively affected the operations of neighbouring 

Dzalanyama Forest leading to its massive deforestation in the past couple of decades. 
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Figure 3-4: Top-left: charcoal selling market in the outskirts of Lilongwe city; Top-right: A 

standard bag of charcoal (roughly 40Kg); Bottom: Two villagers transporting charcoal and 

fuel wood to the market using bicycles. 
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The charcoal industry provides significant employment throughout its value chain. Out of 

the approximately 100,000 people that owe their lives to charcoal, slightly over half of these are 

involved in the actual production. 62 % of the producers are in the small- (less than 30 bags (see 

Figure 3-4) per month) to medium-scale (between 30 – 100 bags per month) production ranges 

together producing approximately 67 % of the annual charcoal tonnage (Kambewa et al., 2007).  

The small-scale producers’ category is comprised of those venturing into charcoal production as 

a coping mechanism against food shortage and/or cash needs while the medium-scale ones are 

slightly business-oriented but are not well cash-endowed (Kambewa et al., 2007). It follows 

therefore that there is a big overlap between the smallholder farming households, who struggle to 

feed themselves and in food deficit year in year out, and the small- and medium-scale charcoal 

producers. 

While the agricultural production challenges pushes the smallholder household into tighter 

corners to survive, the nearby urban city of Lilongwe provides an opportunity in the study area. 

It is estimated that 90 % of the urban families in Malawi rely on biomass energy. Charcoal is the 

dominant energy source for the main urban centres of Blantyre, Lilongwe, Zomba and Mzuzu 

(Government of Malawi, 1998). Many of these urban families cannot manage without charcoal 

as a source of energy making urban consumption the primary market for this highly traded 

commodity. In fact less than 30 % of the urban population is connected to the national electricity 

grid (Kambewa et al., 2007).  This implies that more than two-thirds of the urban households 

have no choice other than to use biomass fuels as their primary energy source. Located in close 

proximity of Lilongwe city and directly linked with relatively accessible unpaved road (see 

Figure 3-1), charcoal from Dzalanyama forest reserve has a ready and steady market (Figure 3-4). 

Charcoal is produced by heating fuelwood (or any other raw biomass) in some type of kiln 

with limited access to air in a process called carbonization (Pennise et al., 2001). Carbonization 

creates a fuel of higher quality than the original fuelwood. Besides charcoal, fuelwood is the 
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main energy carrier for cooking and heating in the developing world. According to Emrich, 

(1985), charcoal production can be categorised into traditional and modern. The traditional 

approach (Figure 3-5) is characterised by: 

 zero or low investment;  

 use of construction materials which are at hand on the site or available nearby, e.g. clay, 

soft-burnt bricks;  

 zero or low maintenance costs achieved by avoiding metal parts in the kiln construction 

as much as possible;  

 manpower not being a major concern; normal raw materials consisting largely of wood 

logs (other types of biomass may be carbonised also);  

 by-product recovery being limited owing to the fact that no sophisticated equipment is 

employed; and  

 typically being a family or cooperative initiative.  

A marked difference between traditional and modern charcoal production is the 

employment of sophisticated technologies and/or high capital investments in which case returns 

from the process include some other essential by-products of the carbonization process. Again 

because of the inherent inefficiencies in the traditional approach, there is also a substantial loss 

of carbon and energy from the starting fuelwood (primarily as carbon dioxide) and, a significant 

production of products of incomplete combustion (Pennise et al., 2001) than in the modern 

approach. Much of the charcoal produced today has been made by families or small businesses 

using the traditional approach. Though inefficient, as it employs simple technology and low 

capital investment, the traditional approach is nevertheless precise and skilful (Emrich, 1985).  

Common in Malawi among the traditional approaches of charcoal production are the pit 

and earthmound kiln methods (Figure 3-5). To cut on raw material transportation costs, small- to 

medium-scale charcoal makers produce their char at the place where they collect the raw 
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materials. Because this will involve frequent movements as the raw materials on the place get 

depleted, employment of heavy equipment is reduced to bare minimum if not none at all (Emrich, 

1985). The business of charcoal making requires skill, patience and readiness to observe correct 

working methods at all times and in all weathers. These "technical secrets" are usually handed 

down from father to son and kept under wraps and well-guarded by the family (Emrich, 1985). 

An important part of the charcoal-making experience concerns the insulation of the charcoal pit 

or earth-mound to control air flow. If not well controlled, excess oxygen will cause the charcoal 

to burn away to ashes and destroy the result of several days' work not to mention wasting the 

fuelwood. Depending on the amount of wood and the size of the kiln, the charcoal making 

process can take more than a month, although the smallest kilns will produce charcoal in a few 

days (Kambewa et al., 2007). The insulation material readily and cheaply available is earth and it 

is one of the factors that greatly contribute to the inefficiencies of the traditional approach.  
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Figure 3-5: Earthmound (top) and pit (bottom) traditional kilns under construction 
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As earlier indicated the traditional earth mound or pit kiln technology is known to be 

wasteful and inefficient with local studies placing the efficiency ratio at little more than 20 % 

(Makungwa, 1997 and Openshaw, 1997). Coupled with increased urban demands for charcoal, 

as the urban population grows, there are marked land cover transitions near production sites, 

usually concentrated along roads and around villages. However, these land cover transitions in 

Malawi are not caused by total charcoal supply being out of balance with wood stocks. They are 

rather usually due to failures to provide incentives to manage wood production in a manner that 

allows regeneration in and around charcoal producing areas (Kambewa et al., 2007).  

Charcoal demand and production peaks during the rainy season (Kambewa et al., 2007). 

This is again the critical time at which the rain fed agriculture needs close attention especially in 

terms of labour. It’s during this very season that households are worst hit by food scarcity after 

depleting their food reserves. As such, as discussed in section 3.2 this competition for labour 

between the households' own farm plots and the need to survive the season spirals the household 

food security deeper into deficit. As the smallholder farming households surrounding 

Dzalanyama forest reserve continue to be in perennial food deficit, the forest resources seem to 

offer an easier way out of perpetual poverty. Being readily accessible from/to the urban centre of 

Lilongwe city, the plight of Dzalanyama Forest Reserve is dealt a further blow to sustain the 

biomass energy demands of the rapidly increasing population of the capital. Not surprising then, 

Dzalanyama Forest Reserve is one of the most threatened natural ecological systems in Malawi 

due deforestation caused largely by charcoal production. 
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Chapter 4 

Assessing deforestation trends of Dzalanyama 

forest 

 Understanding the dynamics of LUCC has been fundamental in rural land management 

especially for sustainable agriculture and forestry management in sub-Saharan Africa 

(Kamusoko et al., 2009). This stems from the fact that the majority of the population living in 

rural areas of central and southern Africa depend on smallholder agriculture and other natural 

resources for their day-to-day needs (Campbell et al., 2000; Gambiza et al., 2000). Endowed 

with vast natural resources essential for its socioeconomic development, the region’s sustainable 

development efforts continue to be obscured by the escalating deforestation and soil degradation 

rates due to population growth and poverty among many other factors (Kamusoko et al., 2009). 

Not spared of this predicament is Dzalanyama Forest Reserve, which is one of the most 

threatened natural ecological systems in Malawi. It is understood, generally that the degradation 

resulting from these human pressures is exceeding the regenerative capacity of the forest reserve 

(Munthali and Murayama, 2011). While it is imperative to employ tools that support the 

understanding of the causes and consequences of land use dynamics, the objective of this chapter 

is to present a scenario analysis that will quantify and highlight the near-past, current and near-

future deforestation of Dzalanyama forest reserve. I do this to draw awareness on the gravity of 

the deforestation situation and hence push for concerted efforts to reverse the current trends. The 

sub-chapters 4.1 present the data sources and the methodology used. I then present and discuss 

the results in sub-chapters 4.2. 
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4.1 Data sources and methods 

Thematic Mapper (TM) remote sensing imagery from USGS's Landsat for the years 1990, 

2000 and 2010 were used. For 1990 the imageries were observed on July 11, 1990 and May 12, 

1989 while 2000 were observed on August 31 and July 21, 2000. For 2010 the imagery was 

observed on May 6, 2010. The Landsat images consist of spectral bands 1 to 7 and have a ground 

resolution of 30m. These images were selected for the study as they provided suitable cloud-free 

(<30 %) spatial coverage and relatively high spatial and spectral resolutions. Each of the Landsat 

imagery bands can provide unique information for the interpretation of surface features. For 

example, Band 1 provides information about the penetration of water bodies, and thus is able to 

differentiate soil and rock from vegetation and detect cultural features. Band 2 is sensitive to 

differences in water turbidity. This band can separate vegetation types, e.g. forest and cropland 

from soil. In this band, settlements and infrastructures have a brighter tone, while vegetation has 

a darker tone. Band 3 is a spectral region of strong chlorophyll absorption, and therefore it can 

distinguish between vegetation and soil. It is capable of separating primary forest, secondary 

forest and cropland areas. Band 4 can distinguish vegetation and its conditions and is therefore 

able to separate primary from secondary forest (degraded forest). Water bodies are a strong 

absorber of near infrared energy, and therefore this band clearly delineates water bodies and 

separates dry and moist soils. Band 5 is capable of separating forest, cropland and water bodies, 

as forest has a darker tone than cropland, while water bodies have an even darker tone than forest 

or cropland. Band 7 has the capacity to separate secondary forest from primary forest areas. 

Aside from the visualization of individual bands, composite images are also employed to 

enhance the interpretability of features of the images (Khoi and Munthali, 2012). 

Due to sensor inherent data acquisition inaccuracies and also data handling, preparation 

and processing errors, ground reference data in image analysis is very important (Thapa and 

Murayama, 2009). Therefore aerial photographs for accuracy assessment purposes were acquired 
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for selected parts in the study area from Malawi Government’s Department of Survey. Because 

of poor record keeping, August 1986 aerial photographs were the closest I could find as 

reference data for 1990 and due to lack of resources the department does not have aerial 

photographs for the later years after 1995. So for the 2000 image I used aerial photographs 

observed in June and July of 1995. Google Earth’s GeoEye 2010 aerial photograph was used as 

reference data for 2010. 

4.1.1 Hybrid supervised classification 

Satellite images contain information in digital numbers, and therefore a classification 

procedure is required to transform these digital numbers into understandable geographic features. 

This is known as information extraction. An image processing procedure can be defined as a 

process of extracting distinct geographic features or categories from satellite images based on 

supervised or unsupervised classification methods. The unsupervised method is the division of 

the whole image into different categories based on the similarity of spectral signatures, where 

each category is labelled with a specific name corresponding to a particular geographic feature 

(Khoi and Munthali, 2012). 

Supervised classification, on the other hand, is based on prior knowledge of the study area 

to classify the images into geographic feature patterns. The process of supervised classification 

may follow several steps summarized into two stages. The first stage is the identification of 

categories of real-world features, i.e. LUC types, using the prior knowledge of features in a study 

area from both primary and secondary data. This step is known as the delineation or 

identification of training areas. The second stage is the labelling of classified categories using a 

selected classification rule (Khoi and Munthali, 2012). 

Anderson et al., (1976) noted that frameworks for organizing and categorizing information 

extractable from a remotely sensed image should be determined from classes that are not only 

important to the study but also discernible from the present data. Visual interpretability of the 
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acquired Landsat images was enhanced using contrast stretch and true colour composites (Bands: 

4, 3 and 2 for Red, Green and Blue respectively) together with aerial photographs for selected 

areas.  

Unsupervised classification (Leica Geosystems, 2005) was used to initially categorize all 

the pixels in the images into a manageable number of 50 classes. Spectrally similar classes were 

then merged and labelled accordingly to prepare training areas to be used to define spectral 

signatures for five final classes (water, forest, cultivation/settlement, grass/wet/bareland and 

plantation). The class Grass/wet/bareland was chosen for conventional purposes as the current 

land use literature for the area has grassland and not wetland or bareland as a category 

(Government of Malawi, 2006) despite the areas being wet bare soils generally following 

streams with a mixture of grass.  

The supervised classification rule used was Maximum likelihood classifier. It assumes a 

special probability distribution, for instance a Gaussian distribution, of the given data a priori, 

and then determines the appropriate parameters from the training data (Keuchel et al., 2003). 

Each data pixel is then assigned to the class for which its values are most likely, i.e. the class 

with the highest a posteriori probability (Swain and Davis, 1978). The maximum likelihood 

algorithm is commonly employed in the separation of LUC classes. This method is useful 

because it requires a minimum of training area data while achieving high accuracy (Khoi and 

Munthali, 2012). The maximum likelihood classifier is a probability density function that is 

associated with a particular training area signature. The classifier evaluates the probability that a 

given pixel belongs to a particular category, and then classifies the pixel to the category with the 

highest probability. The image interpreter trains the software to recognize spectral values 

associated with the training areas. After the signatures for each land use/cover have been defined, 

the software uses those signatures to classify the remaining pixels (Khoi and Munthali, 2012).  
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Spatial correctness in image classification analyses is very important such that accuracy of 

the thematic maps produced is often compared in remote sensing studies (Thapa and Murayama, 

2009). Accuracy assessment therefore, compares the predicted (i.e. classification) results to 

geographically referenced data that are assumed to be true (Lillesand et al., 2008; Richards and 

Jia, 1999). This is achieved through a subjective assessment of the observed difference in 

accuracy undertaken in a statistically rigorous fashion. A set of 100 reference pixels, 20 from 

each of the 5 categories, was used selected randomly to reduce possibility of bias. Among the 

several measures of accuracy assessment I used the kappa coefficient. The Kappa coefficient 

expresses the proportionate reduction in error generated by the classification procedure by 

accounting for all the elements of the confusion matrix excluding all agreements that occur by 

chance thereby providing a more rigorous statistical assessment of the classification (Congalton, 

1991). Figure 4-1 summarizes the classification and analysis procedure. 
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Figure 4-1: Multispectral hybrid classification combining supervised and unsupervised 

approaches 
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4.1.2 Change detection and Markov chain analysis 

To achieve the overall objective of painting the picture of the present deforestation 

scenario and its progression in the near-past, present and near-future cases I employed change 

detection and Markov chain analysis techniques. While the change detection quantified and 

spatially located the changes from the past to present, Markov chains only quantified the changes 

without spatially locating where the changes will occur in future. The spatial change detection 

used the combine tool in ESRI's ArcGIS 10 between the 1990 – 2000 and 2000 – 2010 time 

periods.  

Markov chain analysis is a stochastic process for which for a particular system of interest 

there is a set of discrete states. In the case of LUCC the states correspond to the class categories 

for which a particular parcel of land can belong to at a particular instance (Munthali and 

Murayama, 2011). The parcel of land can only be in one state at a given time moving 

successively from one state to the other with a probability which depends only on the current 

state and not the previous states (Bell and Hinojosa, 1977). The probability of moving from one 

state to the other is called a transition probability which can be represented in a transition 

probability matrix whose elements are non-negative and the row elements sum up to 1 

(Briassoulis, 2000). For this case of an area subdivided into a number of cells each of which can 

be occupied by a given type of land use at a given time, the transition probabilities were 

computed on the basis of classification data between time periods which show the probability 

that a cell will change from one land use type to another within the same particular period in the 

future (Briassoulis, 2000). 

4.2 Results and discussion 

The dominant land uses, following the classification, are cultivation/settlement, forest and 

the Grass/wet/bareland. However in 2010 the situation has changed with Grass/wet/bareland and 
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forest being in almost equal coverage. Figure 4-2 shows the forest cover scenarios for 1990, 

2000, 2010 with overall classification accuracies of 80, 81, and 84 % respectively. The 

proportion of classification error for 1990 and 2000 was much higher due to in part the 

disparities in observation time of the imagery and reference data which had 4 and 5-year gaps 

respectively. The forest cover as of 1990 was 65,775 hectares, of which 22,031 hectares were 

lost by the year 2010. 
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Figure 4-2: Observed land use/cover classification 
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Despite environmental management measures being taken by the surrounding communities, 

the overall land cover change results show a staggering 22,031 hectares (see Table 4-1) of forest 

loss between 1990 and 2010, for which the changes are equally distributed between the time 

intervals. Table 4-1 summarizes the land cover conversion dynamics in hectares and Figure 4-3 

shows the changes spatially. In Table 4-1, each row value represents the number of hectares lost 

from that land cover type to any one of the column land cover types. These land cover changes 

suggest a dynamic population behaviour in which case the reported increased poverty levels and 

urban sprawl start to explain the situation for the 1990 to 2000 and 2000 to 2010 periods 

respectively. The economic opportunities of urban sprawl triggered collective responses such 

that in the typical smallholder communities a wide selection of nutritive requirements for 

household survival were taken directly from the forested environments than in the limited-scope 

smallholder agricultural activities. This underlines a situation of deforestation that is worsening 

in the area.  
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Table 4-1: Land use change between time intervals in hectares 

1990 - 2000 Forest 

Grass/wet/

Bareland 

Cultivation/

Settlement Plantation Water Total 

Forest 0 13,029 446 160 4 13,639 

Grass/wet/Bareland 3,278 0 5,784 562 81 9,705 

Cultivation/Settlement 151 10,302 0 411 93 10,957 

Plantation 82 241 244 0 0 567 

Water 0 24 27 0 0 51 

2000 - 2010 

Forest 0 13,307 293 112 0 13,712 

Grass/wet/Bareland 4,808 0 7,596 228 71 12,703 

Cultivation/Settlement 251 4,704 0 273 55 5,283 

Plantation 23 469 38 0 0 530 

Water 8 33 19 0 0 60 

Note: Overall forest cover loss 1990 - 2010 is 22,031 hectares 
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Figure 4-3: Observed land use/cover change 
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To ascertain the situation in the near-future I employed a Markov chain model. Here the I 

assumed land use change from time 1990 to 2000 and then 2000 to 2010 is a Markov chain with 

stationary transition probability. Each of the five land use categories was assumed to be a 

possible state at any given time of the chain. A Markov chain equation (               ) was 

used.     is the transition probability of state   changing to state   and    represent a vector of 

land use state   at time    and      is the projection of land use properties at time   . In this study, 

land use change was projected for the years 2010, 2020 and 2030 by computing first, second and 

third order Markov chains.  

Using water, forest, Grass/wet/bareland, plantation and cultivation/settlement categories as 

states in the Markov chain model, a transition matrix was computed and land use change 

statistics for 2010, 2020 and 2030 were predicted. Plantation and water are almost constant while 

forest continuously reduces. Compared to observed satellite imagery for 2010, the 2010 Markov 

chain prediction does under predict forest loss. The analysis has shown 26 % of the study area to 

have been forested in 2010 and to be reduced to 24 %  and 22 % in 2020 and 2030 respectively. 

In terms of quantities, the 2010 to 2030 Markov chain trend represent 8,463 hectares of forest 

loss. Compared to the observed forest losses between 1990 to 2000 and 2000 to 2010 (Table 4-1), 

the Markov chains under predict the forest land cover changes given that the business as usual 

scenario triggering the changes is assumed to be maintained. Figure 4-4 shows the Markov chain 

predictions and a projection to 2020 and 2030 graphically. It is evident that the forest reserve is 

under heavy threat and the trends show no signs of abating in the near future. 
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Figure 4-4: Markov chain analysis: projected land use percentages 2020 and 2030 
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The Markov chains analysis’s predictions in this study do suffice in indicating that the 

situation of deforestation in the forest reserve will not abate in the near future. The under-

predictions in this study are understood in the context of the memory-lessness nature of the 

Makov Chain model. That is, the Markov chains analysis assumed a maintained business as 

usual scenario in as far as the drivers of change were concerned. However, the factors causing 

the land cover changes evolved, for instance the intensification of commercial charcoal burning 

leading to massive deforestation between the years 2002 to 2005 (Government of Malawi, 2006). 

This is notwithstanding the fact that I grossly assumed that the observed land cover changes are 

stationary Markov processes. Testing these assumptions is very difficult (see Bell, 1974; 

Briassoulis, 2000; Clark, 1965; and Sklar and Constanza, 1991) as such I did not prove and 

therefore I could not guarantee the stationarity of the processes. I understand too that in our 

attempt to substantiate the degrading conditions of the forest reserve in the near future, I did not 

include constraints on possible transitions or other constraints like availability of land and other 

resources. This is because the focus was to pick out on the possible quantities of change 

regardless of whether they can actually occur or not.  

The foregoing analysis highlights two related issues facing the forest reserve. First is that 

indeed the forest reserve is under heavy ecological threat of extinction and secondly, there is 

indeed dynamism in the factors driving this degradation. While not denying the role of 

population growth and poverty, the trend established in this study cannot be pinned down to 

these two factors only especially in this area where shifting cultivation is not practiced nor is 

there presence of any known large scale transmigration to settlement schemes and/or plantations. 

Despite Markov chains’ failure to depict underlying factors influencing the land cover changes, a 

cross examination of the results against the reports that between 2002 to 2005 deforestation 

intensified (Government of Malawi, 2006) suggests changing economic opportunities to be one 

of the main driving forces. This period coincides with socio-political change in 2004 that saw a 

change of government policy to relocate all central government personnel to the capital city with 
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the aim of cutting central government expenses. This created demand for infrastructural 

materials especially bricks and wood for extra housing for the city dwellers and charcoal and 

firewood for those pushed into the city peripherals. It is difficult indeed to expect stationarity in 

transition probabilities when such complex dynamic factors are dragged into the picture (Lambin 

et al., 2000), however, the not-too-long 40-year period in this study made the requisite Markov 

chains assumptions practically achievable as supported by (Weng, 2002). Overall, the relative 

ease with which I inferred understanding of the dynamic driving factors from the multi-temporal 

land cover data surpassed the limitations the Markov chain analysis posed for the purposes of 

this analysis.  

Indeed for a forest reserve to be losing its forest cover at such rates is very worrisome. As 

such the direction and magnitudes of the deforestation trends established in this study demand a 

rigorous approach that should incorporate the behavioural dynamics of the population living in 

the surrounding community including the social, political and infrastructural changes to achieve 

positive results. Being a largely smallholder farming based community (Government of Malawi, 

2006), a model that will invoke and build on the activities at the individual farm household levels 

would be the most appropriate to reverse the trends and provide sustainable solutions.  
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Chapter 5 

Simulating farm-based decision-making and 

deforestation in Dzalanyama: a multi-agent 

approach 

5.1 Introduction 

With advancements in remote sensing technologies there has been a proliferation of 

modeling tools that analyze deforestation in a spatially explicit context. However, very few of 

these models incorporate household analytical data sets and explicit spatial variables like land 

use; distance to road, river, and markets; plot sizes; and spatial household socio-economic data. 

Such model’s outputs need to include not only estimates of the magnitude of forest clearing and 

degradation but also predictions regarding its location (Kaimowitz and Angelsen, 1998; 

Munthali and Murayama, 2012). Of these tools, spatially referenced MASs or agent based 

simulations appear to show particular promise for exploring interactions between human-coupled 

environmental systems over time. In recent years their application in the study of LUCC has 

grown considerably (Deadman et al., 2004; Parker et al., 2003). With many viewing tropical 

deforestation as an irreversible process leading to permanent land cover change, I describe a 

preliminary effort to develop a geo-computational MAS model called Dzalanyama Multi-Agent 

Simulation (D-MAS) to simulate deforestation of a tropical forest reserve, Dzalanyama, in 

Lilongwe, Malawi. 

While the physical environment strongly influences where tropical deforestation occurs, 

Kaimowitz and Angelsen, (1998) listed several other parameters that influence agents of 

deforestation's decision-making regarding deforesting. These include agricultural markets, input 
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and timber prices; wages and off-farm employment; technological changes in agriculture; and 

accessibility, among other factors. From these, it is evident that tropical deforestation hinges 

strongly on agricultural activities which could be pinned down further to the underlying 

population growth and its inherent pressures on land and poverty (Kaimowitz and Angelsen, 

1998).  

While the study simulates future LUCC (up to 2030) for the Dzalanyama forest reserve area, 

the objective of D-MAS is to provide a socio-scientific basis for potential policy intervention 

scenarios towards sustainable management efforts of the forest reserve.  This chapter describes 

the development of D-MAS to simulate the selections of cropping decisions and a competing labour 

practice (charcoal production) by smallholder farmers surrounding the forest reserve. The study 

simulates the smallholder crop production dynamics of the individual households in the 

surrounding area of the reserve. It is then hoped that this understanding of the social system 

inefficiencies will provide insights into the interrelationships between the household socio-

economic structure and sustenance of the forests reserve.  

This chapter is an effort to, therefore, not only dynamically make estimates of the influences of 

the farm-based decision-making of the smallholder farmers on deforestation of Dzalanyama forest 

reserve at present and in the future, but also predict future outcomes of some particular forest 

resource management actions and policies. The study area was chosen because it has a wide range 

of biophysical and socioeconomic characteristics dominated by smallholder subsistence farming. 

It typifies the rural landscape in most parts of Malawi. I will use the terms "farming household" 

and "household", and also "smallholder farming", "subsistence farming" and "smallholder 

subsistence farming" interchangeably throughout the chapter unless otherwise explicitly stated. 

5.2 Data sources 

The primary data sourced to replicate the household farming activities is as described in 

section 3.2.1 from the field survey conducted in April 2011 and January 2012. The secondary 
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data sourced includes an observed land use base map for the starting year 1990 and observed 

land use maps for 2000 and 2010 used is the model calibration and validation (Figure 4-2). 

Biophysical spatial driving factors were forest/settlement edge distance map (derived from 1990 

land use base map) and distance to road and river (Figure 5-1). The road and river data sets were 

obtained from the Department of Forestry and UNICEF offices in Malawi respectively.  Land 

cover change literature indicates that one of the major contributing factors to deforestation is 

accessibility, which is usually measured by distance from a road and from the edge of the forest 

itself (Kamusoko et al., 2009). I included distance from river because an analysis of the observed 

deforestation trends showed a positive correlation between deforested areas and proximity to 

rivers (see Figure 5-11). It is also included because the earthmound traditional kiln approach 

used to produce charcoal in the area uses earth molded into mounds for insulation (see Figure 3-

5). This molding is a process that requires plenty and readily available water. 
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Figure 5-1: Biophysical distance factors (road, river and forest edge)
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5.3 Methodology 

D-MAS is an abstract representation of the forest reserve landscape, the smallholder 

farming households, and the processes and entities that link them. It is a spatially referenced 

simulation that is wholly written in Java with the Repast Simphony 2.0 toolkit (Repast, 2012). 

The description of the methodology follows the ODD (Overview, Design concepts, and Details) 

protocol for describing individual- and agent-based models (Grimm et al., 2006; Grimm et al., 

2010). 

5.3.1 Overview 

There is an allocation dilemma between selection of cropping decisions and competing 

labour practices (charcoal production) being faced by smallholder farmers in the study area. D-

MAS, therefore, hypothesizes that the smallholder agriculture crop production theories being 

implemented by the households in the communities surrounding Dzalanyama forest reserve 

combined with the biophysical attributes of the study area are impacting on the overall 

deforestation trends of the forest reserve itself. To test this hypothesis three entities (Figure 5-2) 

were developed: 

i) the extension worker (EW) agent (Figure 5-3), represents a government agricultural 

expert tasked with the duty to impart new and better farming techniques to the farming 

households in a particular section of an EPA (see Figure 3-3) to improve production. The 

number of EWs is equal to the number of sections in the three EPAs and each EW can belong to 

and visit farmers in one and only one section; and 
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Figure 5-2: Framework of the interactions and interrelationships of the entities farm, extension worker 

and kiln agent. a) Flowchart; and b) UML diagram  
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ii) Farm household agent (FHA). These are immobile agents that represent the smallholder 

farming households. FHA is characterized by static attributes of family size; types of crops 

grown and size of each plot (acres) and number of children (separated into those above 15 and 

below and/or 15 years) from the field survey data. It also includes total household labour (in 

manhours) derived from the number of family members with children less or equal to 15 years 

contributing half the equivalent of a single adult. While we assumed labour to be sufficient for 

the household, this labour estimate is necessary for the household to be able to engage in ganyu 

labour and IGAs. 

State variables for FHA include "subsidised inputs?", "enough cash for agriculture?" and 

"extension services?". These are boolean variables set to true if the household is a recipient of 

the subsidised production materials, has enough cash (earned from ganyu, cash crops and/or 

IGAs) to buy production materials, and has been visited by an extension worker respectively. 

Ganyu is engaged when a well-off household signals that it requires extra labour. For simplicity, 

this signal can only be perceived by farmers within a buffer radial distance of 1000 metres from 

the specific household that seeks to hire. This does not only bring computational sanity but also 

enforces a sense of realism in that ganyu labour is generally prioritised within close 

neighbourhoods. The FISP is a policy of the Malawi government to subsidize production 

materials for selected poorest households among the poor households re-introduced in 2004 after 

being stopped in the early 1990s. The household then tries to grow the crops (Figure 5-4) and 

engages in off-farm activities (casual labour, and other small scale businesses). The last state 

variable "deforest?" is also boolean and is set to true if the combined food produced and sourced 

from the off-farm activities still does not meet the household food requirements. At this point, 

the kiln agent is then engaged; 

iii) The kiln agent (Figure 5-5). The FHA has been simulated as immobile. However, to 

produce charcoal farmers/producers need to move into the forest area. A kin is the physical 
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location in the forest where charcoal is produced and in the simulation it is an equivalent of 

single grid cell (100x100m = 1ha). The kiln agent has, therefore, been abstractly represented as a 

resource to be used in interactions with the FHA. There can be at most 30 active kilns per time 

step. Because the number of FHAs is large, to reduce computation overheads, it’s the kiln agent 

that is simulated as mobile instead of the FHA. It responds to demands by households to produce 

charcoal and eventually effects the deforestation of the forest reserve. A kiln agent will move 

once its forest stock has been depleted on the current location. The frequency of movement and 

where it moves to is an emergent outcome. The frequency is determined by the need for the FHA 

to deforest while its next spatial location is determined by the biophysical factors (Figures 5-5 

and 5-6). 

The length of a time step represents a year and the simulation runs for 40 time steps 

representing 40 years beginning 1990. For the biophysical factors and land use base map, a grid 

cell represents 1 ha (100 x 100m) and the model landscape spans 615 × 676 hectares. The 

process overview and scheduling of the simulation is as shown in the pseudo code below 

executed once per time step. 
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 Allocate subsidized farm inputs to households            

            Extension worker visits households 

            If Extension worker is within 200 m 

                        Household receives extension services 

            End if 

            If another household is seeking casual labourers and is within 1000 m 

                        If this household has some extra labour available 

                                    Household goes for casual labour 

                        End if 

            End if 

            Household produces/grows crops 

            If there is a food and/or cash deficit 

                        Kiln agent deforests to produce charcoal 

            End if 

 Update system-level results 

5.3.2 Design concepts 

The key emergent outcome is the frequency of the kiln agent movement which represents 

the frequency of deforestation. The kiln agent frequency to move emerges largely from how the 

households perform in crop production which determines the frequency of them requesting to 

deforest to cover food deficits. The households' adaptive behaviour is to deforest when their 

objective - to produce enough food from growing crops - is not met. Due to the low literacy 

levels, I assume limited learning for the households.  For instance, if a household is visited by an 

extension worker this year and is taught new methods of growing crops, it will be able to boost 

its production for that year. However, it is not expected to reproduce these farming techniques 

the following year unless an extension worker visits it again. For similar reasons, the households 

are again assumed not able to estimate long term future consequences of their decisions. 



 

83 

 

Interaction in the simulation is in three categories: household-to-household in the case of 

ganyu labour provision, extension worker-to-household in the dissemination of good farming 

methods, and household-to-kiln to effect deforestation (see Figure 5-2). All interactions are local 

and in each category one agent intentionally signals in order to induce the interaction and the 

other perceives the signal. While it was important to model the actual causes of variability and 

hence emergence, some processes are assumed to be partly random to ensure that model events, 

for instance deforestation, occur within some specified realistic frequency. For model validation, 

the percentage of households that are food deficient at every time step will be observed. The 

frequency with which the kiln agent moves and where it moves to will also be tracked. 

5.3.3 Simulation details 

The initial state of the model is such that all farm household agents are loaded from an 

ESRI shapefile whose attributes define the static attributes of each agent. The shapefile attributes 

are replicated from the 3,533 farming households' characteristics to cover all the households in 

the study area (59,614 households; see Table 3-1). The number of households and their attributes 

is the same in every simulation run, except for cash income, which is set randomly between 

9,000 and 30,000 Malawi Kwacha (MWK) or US$36 and 120 for each household (Government 

of Malawi, 2005). The number of extension workers (representing infiltration of good farming 

methods), the selling price of charcoal, and the number of recipients of the farm input subsidy 

can be varied at the beginning of every simulation run. 

The extension service was implemented as shown in Figure 5-3. The red star represents a 

randomly visiting government extension worker mandated to train the farmers new and better 

farming techniques. The visits are random to account for issues of under-staffing and under-

funding. And for computational simplicity, instead of simulating a visit to each individual 

household, a farmer is deemed to have been trained in new farming methods if s/he is within 

200m of the visiting extension worker in that particular simulation year for that particular visit. 
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FISP targets the poorest of poor farmers in a village. So if, for instance, only 10 farmers can 

receive the “subsidy”  in a village of 100 in that particular simulation year, a farmer will be 

deemed to have received if s/he is among 10 of the least resourced farmers (cash + food reserves) 

arranged linearly from the least resourced to the most resourced.  
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Figure 5-3:  Simulating interaction between farm household (farmer) and extension worker 

(red star) agent 
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Figure 5-4: Farm household agent heuristic decision-making structure to "Grow crops" 

(maize/corn) 
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The household crop production estimates are then made as per the "leaves" of the heuristic 

decision tree shown in Figure 5-4. Each leaf correspond to varying levels of crop productivity 

depending on the availability of cash (to buy production materials), exposure to good farming 

methods (agricultural extension services), and access to subsidized production materials. The 

leaf B in Figure 5-4 represents the minimum basic production using local inputs (e.g. seeds kept 

from previous harvest), estimated at 865 kg/hectare for the year 2010 (Malasa D., personal 

communication, 14 April 2011). This corresponds to a household that does not have access to 

any of the resources. ES and CE represent four times the production capacity of B by employing 

new farming techniques with the added advantage of using at most a quarter of the required 

inputs (cash saving) and having its own fuel wood (World Agroforestry Centre 

2008). S and C are equivalent to three times the basic production capacity while E is just 

double B (Malasa D., personal communication, 14 April 2011). 

The biophysical factors determined where exactly the deforestation should take place. The 

household’s decision to produce charcoal is partially dependent on food or cash deficiency (food 

produced against food required for the household) and partially random for the reason that not 

every household having a food or cash deficit engages in charcoal production. Literature for the 

study area has no specific statistics on the percentage of households who decide to engage in 

charcoal making when in food or cash deficit. However, an analysis of the field survey data 

revealed an approximately 40 % chance that every household in food or cash deficit will opt for 

charcoal making. Figure 5-5 is a flowchart highlighting the spatial logic of how the deforestation 

was simulated. 
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Figure 5-5: Logic of the kiln agent representation 
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The distance criterion in Figure 5-5 picks a forest cell that is closest to the three 

biophysical driving factors of deforestation. Figure 5-6 shows how the simulation enforced 

deforestation contiguity (i.e. minimize salt-and-pepper). The 5 × 5 neighbourhood of each forest 

cell picked by the distance criterion (represented by cell a in Figure 5-6) is searched to locate 

forest cells that have the least number of forest cells in their 3 × 3 neighbourhood than in the 3 × 

3 neighbourhood of this particular forest cell a. In Figure 5-6, if forest cell a meets the distance 

criterion there exist forest cell b in its 5 × 5 neighbourhood. In this case, even though forest cell 

b may not meet the distance criterion like a, the simulation would opt to deforest forest cell b. 

Because b has more non-forest cells surrounding it than a, the simulation assumes b has higher 

probability to be deforested. The actual deforestation occurs if and only if a household agent 

exists that has signalled that it will deforest as a mechanism to cope with food deficiency. 
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Figure 5-6: Enforcing forest loss contiguity 
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5.4 Simulation Results  

The deforestation trends for Dzalanyama forest reserve were simulated over a 40 year 

period beginning in the year 1990. Two scenarios were considered in which smallholder 

households grow crops as their main economic activity and only engage in charcoal production 

as a coping mechanism against food/cash shortages. The two are the business as usual scenario 

(  ) and the increased reward from charcoal production scenario (  ). In    the conditions are 

that i) the retail price of charcoal will be pegged at the prevailing estimated market value per bag 

(see Figure 3-5) of MWK2000 (~US$8); ii) the number of extension workers will be as it stands 

- one per section of the EPAs instead of the recommended two per section due to under-staffing 

(Malasa D., personal communication, 14 April 2011; see Table 3-1); and iii) there will be 31,200 

recipients of subsidized production materials. 

In    the conditions are similar to    except for the increased reward from charcoal 

production which was simulated as an assumed increase in the retail price of a standard bag of 

charcoal by 50 % (pegged at MWK3000 from MWK2000).  

5.4.1 Validation 

5.4.1.1 Farm household and kiln agents 

Figure 5-7 shows the percentage of total households that are food deficient between the 

time steps 1 (1990) to 20 (2010). Between 1990 and 2003 it fluctuates between 70 and 80 % 

which are on the higher side compared to national food deficiency estimates that fluctuate 

between 40 and 65 % (Government of Malawi, 2005) for rural poor households. However, the 40 

– 65 % deficit is comparing household food produced against area average production while in 

the simulation I compared the amount of food the household produced against what it requires 

for the time step. This suggests that the national food deficiency estimates are an underestimation. 

Upon the re-introduction of FISP in 2004 the simulated percentage of food deficient households 
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dropped to around 50 % which is in tandem with the 40 - 60 % (Government of Malawi, 2005) 

for a similar period.  

Figure 5-8 depicts the summed total of the number of times all the kiln agents relocated for 

each simulation time step up to time step 20 (2010). The frequency of the relocation is generally 

constant until 2004 when it drops slightly coinciding with the introduction of FISP that year. The 

cumulative relocation frequency trend depicts the accumulated kiln movements over the period. 

The cumulative relocation frequency value for the year 2000 (11,550) and 2010 (20,087) is 

almost the same as the number of hectares of observed forest loss for 2000 (13, 639ha) and 2010 

(22, 031ha). This is because each kiln agent can occupy a single grid cell (100 ×100m = 1ha) 

and relocates when the grid it is occupying is depleted of its forest stock. This implies that each 

time a kiln agent relocates it will have deforested an extra hectare.  
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Figure 5-7: Percent of total number of food deficient households 

 

 

Figure 5-8: Frequency of movement of the kiln agent 
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Figure 5-9: Forest loss 2000 as a) simulated with business as usual conditions; b) observed 
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Figure 5-10: Forest loss 2010 as a) simulated with business as usual conditions; b) observed 
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5.4.1.2 Spatial accuracy 

Figures 5-9 and 5-10 show the simulation results for the business as usual scenario for the 

years 2000 and 2010 compared with their respective observed land use maps. The number of 

hectares deforested is an emergent phenomenon from the interactions of the farm household 

agent and the kiln agent simulated as the relocation of the kiln agent. From 1990, 12,207 ha of 

forest were simulated as lost against 13,639 ha observed in 2000. This implies kiln agents 

relocated 12, 207 times from 1990 to 2000. The quantities accumulate to 19,459 ha simulated 

against 22,031 ha observed by the year 2010. Statistically, the simulation stands at a standard 

Kappa value of 0.731 and 0.629 when compared with the observed land cover map for 2000 and 

2010 respectively.  

Using Map Comparison Toolkit (Map Comparison Kit, 2012), the simulation does explain 

some land cover change (KSimulation = 0.192). The quantity accuracy, individual class (forest 

to non-forest) transitions similar for both the observed and simulated maps in 2010, stands at 

82 % (KTransition = 0.815).  While the number of times the kiln agent relocated determined the 

quantity accuracy, where it relocated to determined the spatial accuracy which stands at 24 %. 

That is out of all the forest to non-forest class transitions 24 % (KTranslocation = 0.235) were 

correctly allocated spatially (Hits in Figure 5-11). The simulation also compares very well with 

the biophysical driving factors as depicted in Figure 5-12. The spatial pattern is such that the 

farther you move away from the biophysical factors of river, road and the forest/settlement 

boundary the less the deforestation. 

There are some very conspicuous "misplaced" errors (Figure 5-11, 2010), especially those 

occurring in the central area of the forest reserve. These could be attributed to forest 

edge/settlement distance factor, which used the 1990 classified image to define the 

forest/settlement boundary from the non-forest category (see Figure 5-1). The cells in the centre 

of the reserve may have been correctly classified as non-forest, however, they did not represent 
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settlement areas. While most of the non-forest cells coincided with being settlements, especially 

those outside the designated forest reserve boundary (forest edge 1922, Figure 5-1), the 

derivation of the distance from forest/settlement boundary erroneously assumed these non-forest 

cells in the centre of the reserve to be settlements. As such when deriving the forest 

edge/settlement distance factor, the forest cells surrounding the non-forest cells erroneously 

assumed to be settlements were then considered to be close to non-existent settlements. In 

addition, because the river network is dense in the forest reserve, whenever these erroneous 

settlements coincided with roads the simulation picked them as potential areas of further 

deforestation. 
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Figure 5-11: Simulated versus observed forest loss spatial distribution against base map 

1990 
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Figure 5-12: Simulated versus observed forest loss against spatial driving factors 
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5.4.2 Future estimates and scenarios 

Based on the successful simulation for 2000 and 2010, I predicted future forest loss for 

2020 and 2030 using    and    scenarios (Figures 5-13 and 5-14 respectively). The south-eastern 

part of the forest reserve will have lost almost all its forest cover by 2030 in both cases, with the 

deeper and further western side maintaining most of its forest cover. This spatial trend is 

understandable considering the influence of the driving factors as shown in Figure 5-12 for 

which the further the location is from each of the driving factors, the lesser the forest loss. The 

south eastern part has a dense network of both roads and rivers. The quantities involved are 

shown in Figure 5-15 alongside Markov chains predictions (from Figure 4-4).    predicts forest 

loss of 23,100 ha by the year 2020, which accumulates to 26,721 ha in 2030.    has reduced 

predicted forest loss of 21,676 ha in 2020 and 24,060 ha in 2030. 
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Figure 5-13: Predicted Land use/cover with business as usual conditions 
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Figure 5-14: Predicted Land use/cover with a 50 % increase in income rewards from charcoal selling 



 

103 

 

 

Figure 5-15: Quantities of forest loss predictions 2020 and 2030 
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5.5 Discussion 

A MAS approach in which smallholder households in the study area make independent 

decisions to grow crops to sustain their households and how they cope with any shortfalls has 

demonstrated results comparable to observed deforestation trends and those reported in literature 

(Munthali and Murayama, 2011). Individual decision-making based on household composition, 

availability of production materials, access to subsidized production materials, and access to 

sustainable farming methods has shown great capabilities of MAS to encourage further 

exploration of this modelling approach in deforestation. 

It should be mentioned that households' decision-making has no temporal memory of, for 

instance, past crop performances and as such the crops with which a household starts with in 

1990 will be the ones it ends up growing in 2030. The heuristic decision-making is therefore 

based on the household’s available resources and the characteristics of its property at each 

particular point in time. The simulation implemented two off-farm income generating activities: 

1) casual labour to represent all other forms of IGAs in which the households engage; and 2) 

charcoal production, the IGA that leads directly to deforestation of the forest reserve. Labour and 

land were assumed to be sufficient and soil conditions good as per survey observations. With 

these simplifications and assumptions the observed similarities between the temporal patterns of 

the simulated business as usual conditions and those observed through change detection using 

remote sensing techniques are therefore encouraging. 

The solution to reduce the salt and pepper effect offsets the spatial accuracy of the 

simulation by at most some 280 m, as the scenario presented in Figure 5-6 represents the worst 

case possible given that the cell size was 100 × 100 m. This offset is very evident in the distance 

to road than river factor as shown in Figure 5-12. The forest loss shows an uncharacteristic 

positive correlation to increase in distance between 0 to 500 m of the road. This is 
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understandable, though, given that the road network is less dense in the forest reserve than the 

river network. 

The results in    show close similarities with forest loss trends observed in Dzalanyama 

between 1990 and 2010 and provide a good basis to predict forest cover for 2020 and 2030. Food 

deficiency in the smallholder farming system is the major driving factor of quantities of 

deforestation in Dzalanyama. Despite FISP reducing the household food deficiency significantly 

(from around 70 to 50 %), its influence on the quantities of deforestation are less pronounced. 

With 50 % of the households still in food deficit it is therefore not surprising that this reduction 

does not affect the threshold number of households that resort to deforest which the field survey 

established to be between 30 and 40 %. This suggests that to have a significant influence on the 

quantities of forest being lost the focus should either be to ensure that the food deficiency levels 

drop below 30 % of all households or completely look elsewhere to contain the deforestation. 

The former is achievable through all the conventional and well talked about interventions that 

include moving to a universal as opposed to a targeted farm input subsidy program. Improving 

the smallholder agricultural practices to enhance the efficiency in the production has also been 

proposed through, for instance, increasing the infiltration of extension services (through 

increased numbers and better trained extension workers). However, despite being well proven 

and documented in reducing food deficiency and in this case even the deforestation, these 

interventions require substantial financial injections. These are financial resources governments 

in the developing world do not have or at least are never prioritised for the same. Malawi is no 

exception and as such though everyone knows what needs to be done nothing is being done due 

to lack of financial resources. 

5.5.1 Containing deforestation in Dzalanyama 

It would have been easy for this study to toe a similar line in proposing interventions as 

mentioned above to deal with the causes of the food deficiency that leads to the deforestation. 
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However,    looks at the whole problem from a different perspective. If the biggest challenge to 

forestry management is finances,    asks the questions: i) What would happen if the 

households/charcoal producers are allowed to be decently rewarded from their charcoal 

production efforts? and ii) What would happen to the overall deforestation if the charcoal 

production industry is allowed to generate finances for its own sustainable management?    

would somehow imply charcoal production becoming more economically attractive and 

therefore see more households venturing into it. However, the critical factor in the simulation is 

that the smallholder households are assumed (just as in   ) to continue farming as their main 

traditional economic activity and not abandon the crop production and shift significantly towards 

charcoal production. This is achievable because, given that all production materials are available, 

farming is still regarded as a viable main activity for most of the rural households. Secondly, 

even if the households do shift, as Kambewa et al., (2007) noted, the resultant unsustainable 

deforestation levels in most forest reserves in Malawi are not necessarily because the total 

charcoal supply is out of balance with the wood stocks. It is rather due to failure to provide 

incentives to manage wood production in a manner that allows regeneration in and around 

charcoal producing areas.   , therefore, simply presents a socio-scientific simple understanding 

of the positive influence that charcoal production that is generating formal revenue and 

handsomely rewarding for the charcoal producer would have on the overall system dynamics of 

managing deforestation of Dzalanyama Forest Reserve. 

With the assumptions above,    has shown a positive influence on the predicted amounts 

of future forest loss (2020 and 2030). The accumulated forest loss decreased by 1,424 ha (~6 %) 

in 2020 and 2,661 ha (~10 %) in 2030 when compared to the respective business as usual 

predictions. This reduction in forest loss represents an accumulated gain (or sustenance) of forest 

cover of 4 % in 2030. This accumulated gain can only increase by 2030 and the years beyond 

considering that the simulation did not include forest regeneration.   , as proposed in the 

simulation, suggests a possible way of mitigating the consequences (deforestation) of food 
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deficiency induced charcoal production. While it was simulated as an assumed increase in the 

retail price of a standard bag of charcoal,    does not propose a literal and solitary increase in the 

price of charcoal. It would not be easy to increase the price of charcoal literally given the 

economic dynamics of the study area. The socio-economic situation of the urban charcoal market 

is volatile and unpredictable. It is also a very politically sensitive issue for any sitting 

government to pursue as charcoal is used by the majority of the voters.  

How then do we achieve the results of    in reality without necessarily increasing the price 

of a standard bag of charcoal? The most important step is to regulate the charcoal industry 

(production, transportation and selling). With charcoal production still informal and illegal in 

Malawi, this step can only be achieved by formalizing and legalizing the production. The 

charcoal industry is big in Malawi despite being illegal. As charcoal is moved from point of 

production to markets, traders incur other costs that largely include private taxation by public 

officials (Kambewa et al., 2007). These officials include people on duty on roadblocks and 

traffic police officers who often demand payments in cash or kind before they can allow the 

traders to pass with the charcoal. Formalisation of the charcoal industry will therefore, not 

necessarily introduce new and extra taxes but rather generally turn the private taxes into formal 

public taxes. This does not only guarantee that the taxation will not raise the charcoal prices (as 

the taxes already exist) but also a boost to central government revenue collection.  Kambewa et 

al., (2007) estimates that if charcoal were to be exported, its annual foreign exchange income to 

Malawi would fall somewhere between that of tea (Malawi's second largest export after tobacco) 

and sugar (third largest export). 

Once regulated and substantial revenue collected, rules on efficient and effective charcoal 

production can be enforced allowing charcoal producers to make more charcoal from less wood 

stocks. More charcoal would mean the increased accruing income to the households as simulated 
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in    is achieved while less wood stocks would mean reduced wastage of fuel wood. The latter 

then will reproduce, in reality, the reduced future forest cover as simulated in   .  

The result in    provides backing for indeed pushing for formalization of the charcoal 

industry but from the standpoint of its influence on mitigating deforestation as established and 

not just for the purposes of boosting revenue collection as proposed by Kambewa et al., (2007). 

This has the potential of making more financial resources available to both the charcoal 

producers and forestry authorities. In the long run, the forestry authorities would then have the 

much need financial resources that will enable them to enforce further and better sustainable 

forest management interventions and even introduce new ones like ecosystem service payment 

programs. Again with more disposable cash available, the charcoal producers/farmers can then 

begin to invest in better agricultural farming practices to increase crop production or better and 

efficient charcoal production techniques to reduce wastage of fuel wood. The former would 

significantly reduce household dependency on charcoal production while the latter would imply 

cutting fewer trees to sustain the households’ needs. Either way the increased reward from 

charcoal production for the producer serves to reduce the deforestation in the long term. It should 

be mentioned, though, that a formalized and hence more rewarding charcoal production can in 

reality spur increased deforestation in the short term as the economic dynamism of the 

households would shift towards the more rewarding IGA. However, it would be expected to even 

out in the long term as attested by the results in this study.  
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Chapter 6 

Concluding remarks 

Explicit incorporation and articulation of linkages of smallholder production and 

consumption theories on the one hand with frontier tropical deforestation on the other has been 

the missing link in the present-day MAS approaches of LUCC and deforestation. Particularly in 

simulating agents of tropical deforestation acting from a distance. The work of Sulistyawati et al., 

(2005) and the migration sub-model of Rajan and Shibasaki, (2000), however, significantly 

highlight the capabilities of future MAS to simulate household crop production-dependent off-

farm activities, without necessarily relocating the agent. These off-farm activities more often 

than not include illegal forest felling which affects the overall trends in tropical deforestation. 

They can therefore, once successfully simulated, enhance our understanding of the tropical 

deforestation process in areas where there is no significant shifting cultivation or commercial 

logging. 

Homogeneity of tropical smallholder farming activities is controversial and seems to be in 

direct conflict with the heterogeneous approach on which MASs are built. However, with 

explicit dynamism in simulating labour and land scarcity factors of the smallholder tropical 

regions, the small and slow individual homogenous practices at the household level can be 

incorporated and thresholds successfully attained. As such, with a slight shift in focus and 

expansion of scope to accommodate such homogenous environmental activities, MASs would 

best model the resultant trends in massive deforestation. Building on the sensitivity of MAS to 

small changes, D-MAS has demonstrated potential to magnify micro-scale decisions made at the 

individual farm level, exposing the trigger mechanisms of deforestation. By capturing farmers’ 
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interactions with the land-use system, D-MAS provides an important tool for insightful 

management of forest resources to avoid irreversible damages caused by deforestation. 

The ecological landscape of Dzalanyama forest reserve is under massive degradation and 

the trends show no signs of abating if the situation is left unattended. Such rates defeat the whole 

essence of calling the study area a forest reserve. Much as population growth and poverty play 

important roles, the complex forces of changing economic opportunities have the most 

significant impacts on deforestation of the forest reserve. Massive forest loss is evident in the 

forest reserve area from the combined influence of: 1) the households' inability to meet their food 

and/or cash requirements from agriculture, their main activity; and 2) the households' 

engagement in charcoal production (deforestation) as a coping mechanism against the resulting 

food and/or cash deficiencies of (1) above. 

Inefficiencies in the smallholder farming system are the major driving factor of 

deforestation in Dzalanyama and the future looks bleak in the business as usual scenario that is 

influenced further by proximity to road, river and forest/settlement edge. Substantial sustainable 

forest management efforts in the study area and in Malawi in general are hampered by limited 

resources. The study, therefore, proposes regulation of the charcoal production to increase both 

revenue collected by government and cash inflow accruing to the producers. The former would 

imply possibilities to invest in more sustainable policy interventions while the latter would 

significantly reduce household dependency on charcoal production (higher crop production) and 

cutting fewer trees (efficient charcoal production methods) to sustain the households needs. 

Either way, though the simulation puts the gains in forest cover at a mere 4 % in the medium 

term, the advantages of handsomely rewarding charcoal producers would go beyond this 

quantitative benefit in the long term.  

D-MAS has built on the strength of MAS as a replicative tool to develop a deeper 

understanding of the situation of the deforestation trends of Dzalanyama Forest Reserve. 
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Although these results are encouraging in themselves, there is plenty of room for improvement. 

While the quantities involved may be satisfactory, the spatial dimension needs improvements. 

Inclusion of more biophysical factors, for instance elevation, would boost the determination of 

the optimal areas where the deforestation occurs. However, the issue of transition contiguity and 

translocation with which I grappled with during the development of D-MAS must also be taken 

into account. This introduced a trade-off between the need to enforce the golden rule in 

geography - closer entities are more similar than distant ones, in that the forest loss occurs in 

places close to areas that have already lost their forest - and the need to obey the dictates of the 

biophysical factors in determining where "best" the deforestation should occur. As such this 

translocational quagmire will still stand in the way in the future developments of D-MAS. 

With the addition or extension of objects and/or agents, D-MAS is a potential modelling 

framework that could be utilized within other tropical forest areas, especially those in Southern 

Africa. Therefore, though developed primarily to derive understanding of the influence of 

individual farm-based crop production decision-making for Dzalanyama Forest Reserve area, D-

MAS possesses the potential for application to other study areas in the sub-Saharan region and/or 

beyond. 
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Appendix 

A-1 Field survey 

A-1-1 One-to-one interview questionnaire 

HOUSEHOLD CHARACTERISTICS (to farmers - household head)  Form Number:____ 

1. What is your family size? ________________________________________________ 

1.1. Who is the head of the household? ___________________________________ 

1.2. Age/sex of each family member (e.g.  24/M):__________________________ 

2. How many help in farming (age/sex e.g. 24/M)?______________________________ 

3. What is your level of education? mark the appropriate: [ primary ], [ secondary ] or 

[ tertiary ] 

4. Overall, what is your income per year? (Consider income brackets) 

5. How much food does your household require per year (unit!?)? __________________ 

6. Do you have enough labour? [ yes ] or [ no ] (explain) 

7. What is your primary occupation? (farming, teaching etc)_______________________ 

 

FOOD PRODUCTION (to farmers & overall estimates of Extension planning area officers) 

1. What is the size of you total plot (hectares)? _________________________________ 

2. What and how much do you produce from your plot? (e.g. maize/0.5ha, cassava/0.3ha) 

________________________________________________________________________ 

________________________________________________________________________ 

3. Does this suffice for your household needs? [Yes] or[ No] 

4. If you answered NO in (3), why is that the case? (tick all appropriate answers) 

4.1. No access to hybrid inputs      [  ] 

4.2. Lack of enough labour     [  ] 

4.3. No access to government subsidised inputs    [  ] 

4.4. Degraded soil condition      [  ] 

4.5. Insufficient land      [  ] 

4.6. Lack of knowledge of advanced agricultural methods  [  ] 

4.7. Any other reason(s):  

4.7.1. _________________________________________________________ 

4.7.2. _________________________________________________________ 

4.7.3. _________________________________________________________ 

5. If you answered yes in (3), why is that the case? (tick all appropriate answers) 
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5.1. I can afford hybrid inputs     [  ] 

5.2. Sufficient labour     [  ] 

5.3. Have access to government subsidised inputs  [  ] 

5.4. Sufficient land       [  ] 

5.5. Good soil condition     [  ] 

5.6. Have access to extension services (Name them) [  ] __________________ 

5.7. I supplement with cash crops (Name them)  [  ] __________________ 

5.7.1. How and when do you decide to grow cash crops? 

5.7.1.1. ___________________________________________________ 

5.7.1.2. ___________________________________________________ 

5.7.1.3. ___________________________________________________ 

5.8. Any other reason(s):  

5.8.1. _________________________________________________________ 

5.8.2. _________________________________________________________ 

6. Do you produce yearly? [ Yes ] or [ No ] 

7. If your answer to (6) above is no, why not? 

7.1. _______________________________________________________________ 

7.2. _______________________________________________________________ 

7.3. _______________________________________________________________ 

8. Do you have any other sources of income/food apart from farming? [Yes] or [No] 

9. If your answer is yes to (8) above what are they and when do you do these activities? 

9.1.  ______________________________________________________________ 

9.2.  ______________________________________________________________ 

9.3.  ______________________________________________________________ 

10. If your answer is no to both questions (3) and (8) how do you sustain your household? 

10.1. _______________________________________________________________ 

10.2. _______________________________________________________________ 

10.3. _______________________________________________________________ 

10.4. _______________________________________________________________ 

10.5. _______________________________________________________________ 
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A-1-2 Household composition data collection form 

Lilongwe Agricultural Development Division, Malingunde EPA farming household 

characteristics survey January 2012. 

Collector Name:____________________________ Date Collected:___________________ 

Name of farmer 

Head 

of 

house 

Total # of 

people 

(including 

parents) 

# of Children 
Total 

Farm 

size 

(acres) 

Crop Distribution (acres) 

<15yrs >=15 yrs 
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