Spatio-Temporal Analysis of Terrorism Vulnerability: A Case Study of Central Tokyo, Japan

June 2014

Konstantin GREGER
Spatio-Temporal Analysis of Terrorism Vulnerability:
A Case Study of Central Tokyo, Japan

A Dissertation Submitted to
the Graduate School of Life and Environmental Sciences,
the University of Tsukuba
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Science
(Doctoral Program in Geoenvironmental Sciences)

Konstantin GREGER
Abstract

Terrorism has become and continues to be one of the biggest threats of our time. Large-scale attacks like 1995 in Tokyo, 2001 in New York City, Washington DC, and Pennsylvania, 2004 in Madrid, and 2005 in London are tragic proofs that this is especially true for highly urbanized areas all over the world. The more prevalent such terrorist attacks happen the more scientific papers are written about them. Yet, this increased number of scientific engagement has not lead to more detailed insights into the underpinnings of terrorism. Instead there are many complaints in the terrorism research community about a lack of quantitative data to corroborate the theories made by scholars from various engaged disciplines like the political sciences, psychology, peace and conflict studies, economy, engineering, urban planning, and also geography.

In this study I introduce methodologies for the spatio-temporal micro-scale analysis of terrorism vulnerability in highly urbanized areas to help overcome this limitation. The underlying conceptual framework is based on the selection of appropriate vulnerability factors, their operationalization in measurable real-world phenomena, the calculation of their spatial influence, and finally their weighted combination into an overall vulnerability index. I also present an exemplar application of this framework in a case study for an actual scenario in Tokyo, Japan. Furthermore I provide an interpretation of the empirical results of the case study, and finally discuss the usefulness of the framework and its operationalization as well as opportunities for possible further studies.

The Human Activity Based Vulnerability Concept I developed is based on the activities of people and how these shape the environment into places of different value to them. I argue that these values are what generates disasters from the threats to these places. This concept represents the theoretical foundation for the analysis framework, which consists of a number of components: multiple sources of “hard”, quantitative data, carefully selected vulnerability factors, the factors’ spatial influence, an important concept that allows for the analysis of the impact an object’s vulnerability has on its surroundings, and finally the factors’ weights among themselves.

In a case study for the central part of Tokyo, Japan, the Special 23 Wards, I show the application of the aforementioned framework in a real-world example. The vulnerability factors I employed in this case study are the stationary building population, the pedestrian volumes on the streets, the passenger volumes of train stations and trains, and the symbolic value of places. I used a number of micro-scale datasets to operationalize these vulnerability factors, among them population, employment, and school census data, train passenger volumes, building data, and
data of the road and railway networks of the study area. Furthermore, the inclusion of a micro-scale dataset of people's movements in 1-minute intervals allowed me to enrich the analysis by the introduction of the temporal dimension. In the course of the study I developed a number of novel methodologies for the quantification of vulnerability. These involve the spatio-temporal categorical estimation of building populations, the use of network analysis methods for the estimation of pedestrian flows, and the operationalization of the objects' spatial influence using kernel density estimation and a linear function of the weighted inverse distance.

To my best knowledge this is the first time that such an approach has been developed. It combines traditional terrorism research with a bottom-up vulnerability-based focus using spatially grounded analytic tools. The output of the model introduced here are micro-scale maps of the spatial distribution and agglomeration of vulnerability in highly urbanized areas. These can help with communicating the abstract concept of vulnerability to the broad public, and also provide the hitherto missing quantitative data about vulnerability, which can help governments, municipalities and other involved stakeholders in making educated decisions about the use of limited fundings for the mitigation of vulnerability and other counterterrorism measure.

The interpretation of the case study's empirical results revealed several interesting insights into the connection between the urban spatial structure of Central Tokyo and its terrorism vulnerability and the spatio-temporal constraints involved. First and foremost the commuting movements from the suburban belt into the city center lead to a dramatically higher overall daytime population. This results in larger areas of higher vulnerability during the day than at night. Over the course of the day clusters of highest vulnerability develop in areas with many large office buildings. Second, the concentrated morning commuting period has a strong impact on the vulnerability levels surrounding the railway transportation network. This effect together with the generally high building populations and pedestrian volumes around larger train station hubs create the overall highest vulnerability index values. Furthermore, the monocentric urban spatial structure of Tokyo manifests itself in the agglomeration of most of the places with high symbolic relevance on the one hand, and most of the office districts with high daytime populations on the other hand. Based on these observations the conclusions can be made that from a terrorist's perspective the most attractive location for an attack would be in the city center, preferably inside or near a major train station or near railway tracks. The most attractive time would be during the day, preferably the morning commute.

Keywords: GIS, micro-scale, spatial analysis, terrorism, Tokyo, urban areas, vulnerability
Table of Contents

Abstract... i

List of Tables.. vii

List of Figures.. ix

List of Abbreviations... xiii

1 Introduction... 1

2 Definition of Key Terms.. 3

 2.1. Terrorism.. 3

 2.1.1. Terror and Terrorism... 3

 2.1.2. Terrorism Vulnerability Analysis... 5

 2.1.3. Spatial Terrorism Analysis... 8

 2.2. Hazard and Disaster... 11

 2.2.1. Hazard... 11

 2.2.2. Disaster... 12

 2.3. Risk and Vulnerability... 14

 2.3.1. Risk.. 14

 Probability.. 15

 Loss.. 17

 2.3.2. Vulnerability... 17

 Exposure.. 20

 Resistance.. 21

 Resilience... 22

 Attractiveness... 22

 2.3.3. Disaster Model and Human Activity Based Vulnerability Concept................... 24

 2.3.4. Spatial Vulnerability Analysis.. 24

 2.3.5. Significance of Vulnerability in Urban Areas... 28

3 Research Objectives.. 31
3.1. Problem Statement ... 31
3.2. Hypotheses .. 33
3.3. Research Aims ... 34
3.4. Target Audience .. 35

4 Analysis Framework .. 36
 4.1. Objects and Spatial Scale ... 36
 4.2. Components ... 39
 4.2.1. Scenario ... 41
 4.2.2. Vulnerability Factor Selection 41
 4.2.3. Spatial Influence .. 42
 4.2.4. Vulnerability Factor Weighting 43

5 Spatio-Temporal Analysis of Terrorism Vulnerability in Central Tokyo, Japan 45
 5.1. Terrorism in Japan ... 45
 5.1.1. The Past ... 45
 5.1.2. The Present and Future ... 50
 5.2. Study Area and Attack Scenario 56
 5.2.1. Study Area .. 56
 5.2.2. Attack Scenario .. 58
 5.3. Terrorism Vulnerability Evaluation 61
 5.3.1. Stationary Building Population 64
 Introduction ... 64
 Data .. 66
 Methodology .. 76
 Categorical Volumetric Building Population Estimation Process 79
 Adding the Temporal Dimension 84
 Validation ... 88
 Summary ... 94
 5.3.2. Mobile Pedestrian Population 97
 Introduction ... 97
 Data .. 101
Methodology... 101
Calculation of building access... 103
Calculation of train station usage... 105
Calculation of pedestrian traffic volume.. 107
Summary.. 109

5.3.3. Mobile Railway Population... 112
Introduction .. 112
Data ... 112
Methodology ... 114
Train Station Usage .. 114
Railway Link Ridership ... 115
Summary.. 119

5.3.4. Symbolic Value .. 120
Introduction .. 120
Data ... 123
Methodology ... 123
Large Train Stations .. 123
Symbolic Institutions .. 126
Landmarks ... 129
Summary.. 132

5.3.5. Disregarded Vulnerability Factors .. 132
Infrastructural Networks ... 134
Building Attributes .. 134
Temporary Building Population ... 136

5.3.6. Spatial Influence Estimation... 137
Stationary Building Population ... 140
Mobile Pedestrian Population ... 143
Mobile Railway Population ... 143
Symbolic Value ... 148

5.3.7. Vulnerability Map Creation.. 153
List of Tables

Table 1: List of terrorist attack types and weapon information .. 6
Table 2: List of natural and anthropogenic disasters ... 13
Table 3: Different spatial scales of spatial vulnerability analyses in the literature 29
Table 4: Terrorist incidents in Japan (1970-2009) by location .. 52
Table 5: Population figures for the 23 Special Wards of Tokyo as per the 2010 population census. ... 60
Table 6: Necessary datasets for the spatio-temporal building population estimation methodology and datasets used in this study .. 67
Table 7: Assignment of the original employment categories in the employment census data to the generalized usage categories used in the population estimation model .. 71
Table 8: Six usage categories used in the population estimation model and some exemplar real-world usages from the address point dataset ... 72
Table 9: Number of students for different school types per ward in the study area as per the 2010 school census dataset .. 73
Table 10: Assignment of the trip purposes in the Person Trip questionnaire data to the generalized usage categories used in the population estimation model .. 75
Table 11: Modal split of trips within the study area over 24 hours .. 99
Table 12: Matrix showing the composition patterns of transportation chains as transfers of modes of transportation within the study area over 24 hours .. 100
Table 13: Necessary datasets for the spatio-temporal mobile population estimation methodology and datasets used in this study... 102
Table 14: Distribution of stations with multiple affiliated stations and respective passenger transfers .. 108
Table 15: Necessary datasets for the spatial identification of railway link importance and datasets used in this study ... 113
Table 16: Necessary datasets for the spatial identification of symbolic value and datasets used in this study .. 124
Table 17: Train stations within the study area constituting the 95th percentile of the passenger volumes of train stations within the study area as per the 2010 traffic flow volume dataset...

Table 18: Categories of symbolic institutions and corresponding address points within the study area...

Table 19: 25 landmarks in the study area and their categories...

Table 20: Preliminary data for the estimation of temporary building populations...

Table 21: Operationalization of the spatial influence of the four vulnerability factors in this study...

Table 22: Symbolic relevance of large train stations based on their daily passenger traffic volume...

Table 23: Symbolic relevance of the 25 economic, political and touristic landmarks...

Table 24: Weighting of the four vulnerability factors for the scope of this case study...

Table 25: Number of various sensitive infrastructures within the vulnerable areas over the course of 24 hours...

Table 25 (continued): Number of various sensitive infrastructures within the vulnerable areas over the course of 24 hours...

Table 25 (continued): Number of various sensitive infrastructures within the vulnerable areas over the course of 24 hours...

Table 25 (continued): Number of various sensitive infrastructures within the vulnerable areas over the course of 24 hours...

Table 25 (continued): Number of various sensitive infrastructures within the vulnerable areas over the course of 24 hours...
List of Figures

Figure 1: Disaster model used in this study..25
Figure 2: Human Activity Based Vulnerability Concept..26
Figure 3: Hazards of Place Model...27
Figure 4: Spatial vulnerability framework developed in this study as stylized workflow........40
Figure 5: Number of terrorist incidents and the resulting numbers of fatalities and injured in Japan per year (1970-2009)..46
Figure 6: Number of terrorist incidents in Japan (1970-2009) per target type...........48
Figure 7: Terrorist incidents in Japan (1970-2009) by attack type..........................49
Figure 8: Terrorist incidents in Japan (1970-2009) by weapon type.......................51
Figure 9: Result of an opinion poll for citizens and facility managers about crisis management in relation to terrorism: “Which incident are you most afraid of?”...54
Figure 10: Results of an opinion poll for citizens (a-c) and facility managers (d-f) about crisis management in relation to terrorism: “How concerned are you about terrorism?” (a, d); “Do you think that there is a possibility for terrorist attacks to occur in Japan in the future?” (b, e); “Do you think it is likely for you to become a victim of terrorism in Japan?” (c, f) ..55
Figure 11: Location of the study area, which comprises the 23 Special Wards of Tokyo, within the Tokyo Metropolis and Japan...57
Figure 12: Population densities of the 23 Special Wards of Tokyo as per the 2010 population census...59
Figure 13: Population density per census tract as per the 2010 population census dataset for parts of the Tokyo Metropolitan Area..69
Figure 14: Spatial distribution of the six usage categories within the study area as per the 2011 Telepoint! Pack dataset...77
Figure 15: Spatial distribution of the six usage categories within the central part of the study area, inside the tracks of the Yamanote Line loop as per the 2011 Telepoint! Pack dataset...80
Figure 16: Floorspace occupancy ratios for the usage categories a) “home”, b) “business & office”, and c) “retail & service” in a small part of the study area derived from the 2009 employment census...82

Figure 17: Estimated total stationary building population SBPi,c for all buildings in the study area. The data is the result of the stationary building population estimation methodology using a number of data sources from 2008-2011...............................85

Figure 18: Temporal fluctuation of the populations within the two activity categories “home” and “work” for an exemplar census tract within the study area...87

Figure 19: Comparison between the estimated building populations for the activity categories “home” (left) and “work” (right) for 5am (top) and 1pm (bottom) for a part of the study area. The data is the result of the stationary building population estimation methodology using a number of data sources from 2008-2011...............................89

Figure 20: Total estimated stationary spatio-temporal categorical building population within the study area at 1pm. The data is the result of the stationary building population estimation methodology using a number of data sources from 2008-2011.........................90

Figure 21: Validation of the stationary building population estimation methodology using door counts for three exemplar buildings within the study area...91

Figure 22: Overestimation of the stationary building population estimation model for three validation buildings...93

Figure 23: Example of erroneous assignments of buildings to street segments based on shortest straight-line distances...104

Figure 24: Hourly passenger transfers and cumulative passenger transfer ratio at Kanda Station. ...106

Figure 25: Normalized spatio-temporal betweenness centrality measure (NSTBCM) for all street segments within the study area at 9am..106

Figure 26: Train station complexes including overground buildings and underground passages around Tokyo Station as per the 2008/09 Zenrin Zmap-TOWNII dataset.................................110

Figure 27: Estimated train station usage at 8am. The data is the result of the train station usage estimation methodology using a number of data sources from 2008-2011..............117
Figure 28: Estimated railway link ridership at 8am. The data is the result of the railway link ridership estimation methodology using a number of data sources from 2008-2011.

Figure 29: Semi-automated selection of over- and underground train station complexes from the train station point feature dataset using the example of Akihabara Station.

Figure 30: Spatial distribution of symbolic places of all three categories within the study area.

Figure 31: Recommended minimum standoff distances in relation to the size of an explosive device.

Figure 32: Comparison of the estimated population figures per building (left) and the resulting raster surface representing the normalized spatial influence (nSI) (right) for a detail of the study area at 9am.

Figure 33: Comparison of the estimated population figures per street segment (left) and the resulting raster surface representing the normalized spatial influence (nSI) (right) for a detail of the study area at 8am.

Figure 34: Comparison of the estimated train station usage (left) and the resulting raster surface representing the normalized spatial influence (nSI) (right) for a detail of the study area at 8am.

Figure 35: Comparison of the estimated railway link ridership (left) and the resulting raster surface representing the normalized spatial influence (nSI) (right) for a detail of the study area at 8am.

Figure 36: Spatial distribution of symbolic places within the study area and their symbolic relevance.

Figure 37: Comparison of the symbolic places including their symbolic relevance (left) and the resulting raster surface representing the normalized spatial influence (nSI) (right) for a detail of the study area.

Figure 38: Spatial distribution of the overall vulnerability at 8am based on the four selected vulnerability factors and their weights.

Figure 39: Percentage of the relative area of the study area over the course of 24 hours of four vulnerability levels (level “low” not shown).
Figure 40: Spatial distribution of the vulnerability index at 8am in the center of the study area.
)

Figure 41: Spatial distribution of the vulnerability index at 12pm in the center of the study area.

Figure 42: Variation of the vulnerability index as a result of stationary and mobile populations in Shinjuku at a) 2am, b) 8am, and c) 12pm.

Figure 43: Raise of the vulnerability index as a result of overlapping vulnerability factor influences at Yasukuni Shrine at a) 8am, b) 9am, and c) 10am.

Figure 44: Raise of the vulnerability index as a result of single crowded buildings and building clusters in Marunouchi and Otemachi at a) 3am, b) 9am, and c) 7pm.

Figure 45: Total estimated stationary building population in the vulnerable areas of the study area over the course of 24 hours.

Figure 46: Estimated mobile pedestrian population in the vulnerable areas of the study area over the course of 24 hours. The values do not represent absolute people but dimensionless index values.

Figure 47: Estimated train station usage in the vulnerable areas of the study area over the course of 24 hours. The values do not represent absolute people but dimensionless index values.

Figure 48: Estimated railway link importance in the vulnerable areas of the study area over the course of 24 hours. The values do not represent absolute people but dimensionless index values.

Figure 49: Spatial distribution of sensitive infrastructures over the study area.