Spatiotemporal Analysis of Tsunami Vertical Evacuation:

A Case Study of the Shizuoka Metropolitan Area

January 2016

Gerasimos VOULGARIS

Spatiotemporal Analysis of Tsunami Vertical Evacuation: A Case Study of the Shizuoka Metropolitan Area

A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctoral Program in Geoenvironmental Sciences)

Gerasimos VOULGARIS

Abstract

The city of Shizuoka is the capital city of the Shizuoka prefecture is located in central Japan. The geographic position of the city gives it a special role in the area, as major transportation networks such as rail and highways that connect North and South Japan go through the city constituting it a central node in Japan's Geography. At the same time, the city directly faces the Nankai Trough, which is expected to give a major tsunamigenic earthquake every 100 to 200 years. A tsunami generated by such an earthquake could have major implications to the lives of the city's residents, even from the very first moments of the tsunami when they will need to escape. As such, there is a need to study the potential for a vertical evacuation in the city in order to provide multiple options for safe refuge in such an event.

This study has the main objective of finding vertical evacuation sites among the currently existing buildings in the city, an approach that allows fast results in the face of immediate danger, and to analyze their potential for vertical evacuation by examining how these buildings become inundated under variable tsunami scenarios, and how the city's population moves throughout them in different times of the day leaving increased or decreased volume available for evacuation. A wide range of Geographic Information System (GIS) datasets, as well as demographical and people flow movement data were used in order to (a) calculate the inundation ratio of buildings in Shizuoka City, (b) calculate the volume loss of buildings due to tsunamis based on the inundation ratio, (c) estimate the building population of the buildings in Shizuoka over 24 hours of the day and (d) introduce criteria per tsunami scenario in order to estimate how many people can be accepted in each building for evacuation based on the variable population.

The approach of this research has indicated that for four different tsunami scenarios (5m, 10m, 20m, and 34m run-up) there are 3204 potential vertical evacuation sites for the 34m scenario, 10,426 potential vertical evacuation sites for the 20m scenario, 2,046 potential vertical evacuation sites for 10m scenario, and 1643 potential vertical evacuation sites for the 5m scenario.

The analysis of the people movement over 24 hours has shown that there are discreet population distribution patterns depending on the time of the day. In the daytime, people are concentrated in the CBD for work and the other areas of the city are less populated, while in the nighttime the majority of the population is at home and distributed at the whole extent of the city. Finally, there are morning, noon and evening transit hours where great parts of the population are in transit, and outside buildings, at different locations in the city based on their transportation method. Concerning the capacity to accept people for vertical evacuation, the temporal population estimation and volume loss calculation indicate that on all four scenarios, the maximum total capacity to accept evacuees is achieved at 10am in the morning, with the 5m scenario sites allowing for 608,948 people to be accepted in the vertical evacuation sites, the 10 meter scenario allowing for 1,746,543 people to be accepted, the 20m scenario allowing for 5,764,030 people to be accepted, and the 34m scenario allowing for 1,865,315 people to be accepted. These numbers indicate that a majority of the city's population can be evacuated in potential evacuation sites that meet this study's criteria, within the tsunami flood zone of each scenario, greatly reducing the need for movement outside the tsunami flood. The approach further reveals, that this can be achieved by utilizing only existing buildings in the city without the need for additional construction. The 24h building population estimation method used allows for anticipating a building's population and capacity to accept evacuees during different times of the day allowing for temporal optimization of evacuation.

This study contributed in better understanding of how a moving population affects building population throughout the day and therefore the potential for vertical evacuation during different times of the day. The approach used in this research combines methods from different fields of Geography and GIS into a new approach that can be used in different locations that meet the data requirements, producing similar results that can be used by interested parties such as disaster planners, emergency managers and other Geographers in order to produce enhanced and optimized vertical evacuation plans.

Keywords: Building Population Estimation; GIS; Shizuoka; Tsunami; Vertical Evacuation

Contents

Abstract	i
Contents	iii
List of Figures	vi
List of Tables	x
Abbreviations	xii
Chapter 1 Introduction	1
1.1 Background and problem statement	1
1.2 Literature review	3
1.2.1 Earthquake and tsunami hazard from the Nankai Trough	3
1.2.2 The concept of vertical evacuation	6
1.2.3 Tsunami water depth vs Inundation Ratio	13
1.2.4 Building population estimation studies	16
1.3 Research purpose and objectives	17
Chapter 2 Study Area: The City of Shizuoka	22
2.1 Geographical Setting	22
2.2 Data collection	25
2.3 Urban structure of Shizuoka City	29
2.4 Transportation networks	35
2.5 Tsunami run-up scenarios	39
2.6 Current evacuation sites and evacuation plan in Shizuoka City	46
2.6.1 Analyzing the current evacuation sites with the use of GIS	46
2.6.2 The Shizuoka City Municipal Office tsunami evacuation plan	53
2.7 Demographics of the city of Shizuoka	55

Chapter 3 Exposure, Inundation Ratio and Building Volume Loss	62
3.1 Calculation Assumptions	62
3.2 Building height validation	63
3.3 Building exposure	67
3.4 Calculating the inundation ratio	67
3.5 Building volume loss and available volume	74
3.6 Ground truthing the endurance of low inundation ratio buildings	80
Chapter 4 Building population estimation over 24 hours of a day	90
4.1 Introduction	90
4.2 Estimating building population using census data	91
4.3 The temporal dimension of building population estimation	99
4.3.1 Introduction	99
4.3.2 The 2001 people flow data for Shizuoka City	100
4.3.3 Adjusting population census tracts to 24 hourly intervals	105
4.3.4 Validation	111
Chapter 5 Analyzing the potential for vertical evacuation	116
5.1 Introduction	116
5.2 Criteria and assumptions	116
5.3 Criteria application and vertical evacuation analysis	118
5.3.1 Vertical evacuation analysis calculations	118
5.3.2 Results	118
5.4 Results discussion	127
5.4.1 Number of potential sites and available volume	127
5.4.2 Spatial and temporal aspects of vertical evacuation	129
Chapter 6 Conclusions	135
Acknowledgements	139

References	
Appendix	

List of Figures

Figure 1-1 The Nankai Trough and a list of historic earthquakes in the area4		
Figure 1-2 Tsunami deposits in regions facing the Nankai Trough5		
Figure 1-3 School designated as a tsunami vertical evacuation site		
Figure 1-4 Lighthouse designated as a tsunami vertical evacuation site		
Figure 1-5 Spatial distribution of the inundation ratio of buildings in Aihama, Chiba Prefecture,		
Japan, over a 10m run-up tsunami scenario15		
Figure 1-6 Flow of the research		
Figure 2-1 Location of the Shizuoka Prefecture, Shizuoka City and its three Wards, the Central		
Business District of Shizuoka city and the boundary of the Study Area24		
Figure 2-2 The Zenrin Zmap Town II 2008/2009 dataset visualized as per the floor number. In the		
sotuhwest of the map the part of the CBD is seen containing the tallest buildings in Shizuoka.		
Figure 2-3 Photograph of an area in the CBD of Shizuoka City		
Figure 2-4 Photograph of the center of Shimizu, as seen from the inside of the Shimizu train station.		
Figure 2-5 Office and residence buildings in the area around the center of Shimizu		
Figure 2-6 Transportation networks of Shizuoka City		
Figure 2-7 34m run-up tsunami inundation scenario in the city of Shizuoka42		
Figure 2-8 20m run-up tsunami inundation scenario in the city of Shizuoka43		
Figure 2-9 10m run-up tsunami inundation scenario in the city of Shizuoka44		
Figure 2-10 5m run-up tsunami inundation scenario in the city of Shizuoka45		
Figure 2-11 Current designated evacuation sites for the city of Shizuoka		
Figure 2-12 Spatial distribution of evacuation sites within the city of Shizuoka over a 34m tsunami		
inundation scenario, classified per their capacity. The flat surface type has no maximum		
capacity		

Figure 2-13 Population distribution by ward, for the city of Shizuoka
Figure 2-14 Population pyramid of the city of Shizuoka
Figure 2-15 500m residents population mesh for the city of Shizuoka
Figure 2-16 500m workers population mesh for the city of Shizuoka
Figure 3-1 Sample areas of field surveyed buildings in a) Shizuoka City Center, and b) Shimizu66
Figure 3-2 Spatial distribution of the inundation ratio of buildings in Shizuoka City, over a 34m run-
up70
Figure 3-3 Spatial distribution of the inundation ratio of buildings in Shizuoka City, over a 20m run-
up71
Figure 3-4 Spatial distribution of the inundation ratio of buildings in Shizuoka City, over a 10m run-
up72
Figure 3-5 Spatial distribution of the inundation ratio of buildings in Shizuoka City, over a 5m run-
up73
Figure 3-6 Building volume loss due to a 34m run-up tsunami
Figure 3-7 Building volume loss due to a 20m run-up tsunami
Figure 3-8 Building volume loss due to a 10m run-up tsunami
Figure 3-9 Building volume loss due to a 5m run-up tsunami
Figure 3-10 Map of sample area in Shimizu showing the distribution of field surveyed buildings as
per their construction material
Figure 3-11 Map of sample area in Shimizu showing the distribution of field surveyed buildings as
per their preservation conditions
Figure 3-12 Spatial distribution of field surveyed buildings in the CBD of Shizuoka City as per their
construction material
Figure 3-13 Spatial distribution of field surveyed buildings in the CBD of Shizuoka City as per their
preservation conditions

Figure 5-4 Vertical evacuation movements per tsunami severity, time of the day and	l location during
the tounami	124

List of Tables

Table 2-1 Data collected during the course of this study, including the time of issue or collection and
their providing source
Table 2-2 Field survey data collection methods, data types and time frame of collection
Table 2-3 Currently designated evacuation sites and their location in each tsunami scenario
Table 2-4 Capacity statistics of currently designated evacuation sites in Shizuoka City
Table 3-1 Field measured building heights
Table 3-2 Building attributes and attribute values that were catalogued during the field survey of July
2015
Table 4-1 Distribution of buildings, and estimated daytime and nighttime populations, per scenario
flood zone. The total number of buildings refers is the number of buildings with floor number
information that was included in the calculation
Table 4-2 Attributes and values of the points in the 2001 person trip data of Shizuoka. Data source:
CSIS
Table 5-1 Currently designated evacuation sites by the Japanese Government and potential evacuation
sites resulting from the methodology of this study in the flood zone of each tsunami scenario.
Table 5-2 Total population of people already in potential evacuation sites, and additional population
that can be accepted over 24 hours of a day. in the 5m scenario and inundation ratio of 25% or
less
Table 5-3 Total population of people already in potential evacuation sites, and additional population
that can be accepted over 24 hours of a day. in the 10m scenario and inundation ratio of 25% or
less
Table 5-4 Total population of people already in potential evacuation sites, and additional population
that can be accepted over 24 hours of a day. in the 20m scenario and inundation ratio of 75% or
less