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Abstract 

Cellular automata (CA) have been in popular use for urban geosimulation. However, CA 

modeling in urban geosimulation is still in its infancy and at a development phase, being faced with 

many challenges, such as grid size selection, land use category identification, modeling 

neighborhood interactions as well as appropriate calibration approach. Urban area has grown greatly 

in the last century in the Tokyo metropolitan area, and the trend would continue according to the 

population projections. Due to this rapid urban growth, a lot of environmental changes have occurred. 

This study aims at modeling spatial process of urban growth in the Tokyo metropolitan area using 

CA so as to improve the methodology in the application of CA coupled with Geographical 

Information System (GIS) to urban modeling. In particular, this research focuses on three 

fundamental elements of the CA - the grid size, the cell state, and the neighborhood effect.  

 The situation and limitation of urban analysis using remote sensing technique is discussed. The 

data set “Detailed Digital Information (10m grid land-use) Metropolitan Area” of Tokyo 

(DDIMA10m) is chosen as basic data set for this research. Based on the data set, fractal dimension 

and spatial metrics are adopted to analyze the characteristics of spatial process of urban growth in the 

Tokyo metropolitan area. The results illustrate the characteristics of compact growth or 

conglomeration of the existing urbanized area, and indicate that urbanized area takes bifractal 

structure in the period from 1974 to 1994.  

 Grid size and cell state are most important elements in the definition of CA. How to theoretically 

identify grid size and cell state of CA is explored in this research. The results illustrate that grid size 

of CA and urban land-use classification systems affect the understanding of spatial process of urban 

growth. This research provides theoretical justification approaches for selecting grid size and 

land-use classification system in CA-based urban models. 
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 Traditionally, modeling urban growth always deals with study areas into binary categories of 

land use: urbanized area and non-urbanized area. The fact is omitted that urban growth is the results 

of the emergence of various urban activities as well as their interactions and competition. In this 

research, urbanized area is divided into detailed land-use types, and the emergence, interaction, and 

competition of these land-use types yield the fact of urban growth. An alternative neighborhood 

effect model is proposed based on the integration of the theory of Tobler’s First Law of Geography 

with Reilly’s gravity model and coupled with logistical regression approach. This model provides a 

new method to calibrate the neighborhood interactions in the spatial process of urban growth instead 

of traditional “trial and error” approach.  

 Constrained CA model is used to simulate the urban growth in the Tokyo metropolitan area in 

1994. Compared with actual land-use pattern in 1994, the results of simulation are discussed at both 

of macro classification scale and micro classification scale in four ways: quantitative comparison 

through cell-by-cell, comparison of spatial form of urbanized area through fractal dimension, 

comparison of urban landscape through spatial metrics, and regional characteristics analysis. The 

results indicate that urban geosimulation model proposed in this research can visually and well 

simulate the spatial process of urban growth of the Tokyo metropolitan area, and can be applicable in 

others regions for predicting the spatial process for the future by urban planners. 

 

Keywords: cellular automata; urban growth; geosimulation; geographic information system and 

science; neighborhood interactions; the Tokyo metropolitan area; spatial model; 

complex systems 
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Chapter one 

Introduction 

1.1 Problem statement and research questions 

Land-use and Land-cover Changes (LUCC), as one of the main driving forces of global 

environmental change (Fresco et al., 1997; Turner II et al., 1997), significantly affect key aspects 

of Earth System functioning (Lambin et al., 2001). They directly impact biotic diversity 

worldwide (Sala et al., 2000); contribute to local and regional climate change (Chase et al., 2000) 

as well as to global climate warming (Houghton et al., 1999); are the primary source of soil 

degradation (Tolba et al., 1992); and, by altering ecosystem services, affect the ability of 

biological systems to support human needs (Vitousek et al., 1997). Therefore, LUCC 

undoubtedly have become a central theme of global environmental change research (Turner II, 

1994; Vitousek et al., 1997) and attracted sweeping attentions of scientists with background in 

different disciplines, ranging from anthropology to mathematical programming.  

Generally it is recognized that natural forces and human activities are two factors of main 

driving forces on LUCC at a local and global scale. However, at short time scale (Several dozens 

years or even one hundred years), the effect of natural forces is comparatively less than that of 

human activities (Ye and Fu, 1994), and the most striking human-induced land transformation of 

the current era is that of urbanization (Clarke et al., 1997). Traditionally, urbanization was 

recognized as a process of population concentration (Tisdale, 1942), which is mainly derived 
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from industrialization and modernization (Smailes, 1975). It proceeds in two ways: the 

multiplication of the points of concentration and the increase in size of individual concentrations. 

Nevertheless, with the development of modernization, another manifestation of urbanization has 

come into being, which was associated with the transformation of the socio-economic life of 

settlements inherited from the former agrarian pattern, especially in metropolitan area in 

developed countries (Smailes, 1975). Villages in these areas have become settlements of people 

who have urban associations by reason of their work or background, manifestations of which 

may well be seen as a further step in a continuing process of urbanization (Smailes, 1975). 

However, no matter which kinds of manifestation, the process of urbanization brings on the 

spread of urbanized area into the surrounding countryside of cities and towns, and spawning 

suburbs and swallowing up farms and villages, which are the idioms of modern urban growth 

(Qadeer, 2004). Therefore, urbanization has been primarily a phenomenon of urban growth 

(Qadeer, 2004).  

Past centuries were such a period with rapid urbanization all over the world, in which most 

people quickly congregated in the urban area or metropolitan area. In a longer timescale, 200 

years, total global population has increased six times and the earth’s urban population has 

increased over 100 times (Hauser et al., 1982). The urban population in the world was estimated 

at 2.4 billion in 1995 and is expected to double at about the year 2025 (Antrop, 2000). Increasing 

population and urbanization result in the most complex process of land-use and land-cover 

changes from local to global scale. Pond and Yeates (1994) estimated for a growing country in 

Canada that, in addition to the actual urban area, 20% of the land was in the process of the urban 

transition and 2% was in ex-urban uses, fully dependent on the urbanized areas (Pond and Yeates, 

1994). This process, in turn, has profoundly disrupted the structure and function of ecosystems. 

While the urbanized areas taken by the huge population account for only 2% of the Earth’s land 

surface (Grimm et al., 2000), they consumed more than 75% of its resources (May, 2004), and 

land-use and land-cover changes caused by the rapid urbanization have greatly impacted the 
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local (Lin and Ho, 2003; McKinney, 2006; Paul and Meyer, 2001) and global environmental 

changes (Grimm et al., 2000; Lambin et al., 2001). Consequently, to effectively discern and 

interpret spatiotemporal patterns, relationships, and interactions among features, activities, and 

events in the process of urbanization have long been hot topics in multi disciplines, especially in 

geography. In addition, city planners also greatly pay attention to the understanding of 

urbanization process as they try to learn how to plan urban land-use more effectively by 

systematically evaluating the outcomes of past planning attempts (Kaiser et al., 1995). Ideally 

they would like to see the possible consequences of the plans and policies they may have under 

consideration. 

Early efforts achieved by geographers, economists, and social scientists with regard to 

understanding the morphology and evolution of cities coming from urbanization were three 

classic theories: the concentric zone theory (Burgess, 1925), the sector theory (Hoyt, 1939), and 

the multiple nuclei theory. Since the 1960s, a variety of new theories and methods have been 

used for describing the form and formation of urban systems. These include catastrophe theory 

(Wilson, 1976), chaos theory (Wilson, 1981; Wong and Fotheringham, 1990), dissipative 

structure theory (Allen and Sanglier, 1979b), fractals (Batty and Longley, 1989; Frankhauser and 

Sadler, 1991; White and Engelen, 1993), and theory of self-organization (Portugali, 2000; 

Schweitzer, 1997).  

Many of the theories developed are more accurately described as models, as they consist of a 

series of interconnected hypotheses, rather than a set of empirically validated laws (Macmillan, 

1989). A model is often an idealized representation of reality, in order to demonstrate certain of 

its properties. Such idealized representations are abstractions of reality and omit certain 

unimportant details. The process of model building, therefore, represents a procedure for making 

these abstractions (Thomas and Huggett, 1980).  

Modeling, especially if done in a spatially-explicit, integrated and multi-scale manner, is an 

important technique for the exploration of alternative pathways into the future, for conducting 



 4

experiments that test our understanding of key processes, and for describing the latter in 

quantitative terms (Lambin et al., 2000). Batty (1971) pointed out three principal roles for 

mathematical models of cities can be distinguished. First, such models have been developed to 

help in refining and experimenting with hypotheses about the structure of cities; they form an 

essential part of theory development in urban research. Second, models have been used to 

provide methods for educating planners in urban theory. Third, and perhaps most important, the 

models can be used in practical planning studies to help predict the likely consequences of 

planning or not planning the future of cities (Batty, 1971). Like other geographic phenomenon, 

urban growth is not easily experimented with on the ground. Realistic but synthetic computer 

simulation based on spatial explicitly models can be built as a laboratory for exploring ideas and 

plans that we would not otherwise be able to effect on the ground. Modeling can be used as a 

planning support system (PSS), to pose what-if question and evaluate likely or alternative 

outcomes. 

In contrast with the static models of urban morphology developed in 1950s, new approaches 

in urban modeling after 1960s emphasized the dynamics of urban form and its relation to 

generating processes. Also in sharp contrast with the traditional views, these new approaches 

were based on non-equilibrium and nonlinear systems perspectives. In addition, from fractals to 

cellular automata and to self-organization, bottom-up and local interactions were viewed 

essential for the formation of urban systems.  

The thing that cellular automata (CA) were introduced into urban modeling has been 

deemed as an important innovation in the field of urban modeling. The cellular automaton is a 

rule-based algorithm that has been long employed in computer science to explore social and 

physical phenomena (Wolfram, 2002). For some time now, CA have been in popular use for 

urban geosimulation (Barredo et al., 2003; Batty, 1998; Batty et al., 1999; Clarke and Gaydos, 

1998; Clarke et al., 1997; White and Engelen, 2000; White et al., 1997; Wu, 1998a; Wu, 2002; 

Xia and Yeh, 2000; Yeh and Xia, 1998; Yeh and Xia, 2002). CA have many advantages for 
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modeling urban phenomena, including their decentralized approach, the link they provide to 

complexity theory, the connection of form with function and pattern with process, the relative 

ease with which model results can be visualized, their flexibility, their dynamic approach, and 

also their affinities with Geographic Information Systems (GIS) and remotely sensed data 

(Torrens, 2000). However, although CA have been largely adopted in urban geosimulation, there 

are several key areas on which those working with urban CA might focus future efforts and build 

upon existing success: exploration in spatial complexity, infusing urban CA with theory, 

exercises in education and outreach, the development of hybrid model structures, and new 

strategies for validating cellular urban models, proposed by Torrens and O’Sullivan in 2001.  

Nevertheless, aside from these peripheral problems, some intrinsic techniques in the 

application of CA to urban geosimulation also have not been well dealt with. Formally, a finite 

cellular automaton A can be represented by means of a finite set of states S = {S1, S2, …, SN} and 

a set of transition rules T, which is associated with a neighborhood configuration R neighboring 

A:  

A ~ (S, T, R)         (1-1) 

The state of cellular automaton A changes over time based on its internal transition rules T and 

external input. Up to date, how to identify appropriate size of automaton A and the states S to 

represent the objects’ behavior in urbanized area has not been theoretically justified yet in the 

field of urban geosimulation using CA. The neighborhood R also has no theoretical configuration. 

These problems undoubtedly influence the understanding of urban growth process (Claire and 

Scott, 2005; Yeh and Li, 2006).  

As one of top megacities in the world, urban land-use has greatly changed in last century in 

the Tokyo metropolitan area as the population has grown largely, and the trend would continue 

according to the population projections. Table 1 shows the change trend of population of 12 

megacities in the world in period of 40 years from 1975 to 2015. Because of the rapid 

transformation of urban land-use, many kinds of environmental changes have occurred 
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Table 1.1 Top megacities in the world 
 

Population (millions) 
Rank City 

1975 2004 2015 (estimated) 
1 Tokyo 26.6 35.0 36.2 
2 Mumbai 7.3 17.4 22.6 
3 Delhi 4.4 14.1 20.9 
4 Mexico City 10.7 18.7 20.6 
5 Sao Paolo 9.6 17.8 20.0 
6 New York 15.9 18.3 19.7 
7 Dhaka 2.2 11.6 17.9 
8 Jakata 4.8 12.3 17.5 
9 Lagos 1.9 10.1 17.0 
10 Calcutta 7.9 13.8 16.8 
11 Karachi 4.0 11.1 16.2 
12 Buenos Aires 9.1 13.0 14.6 

 
Source: May, 2004 
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(Ichinose et al., 1999; Kondoh and Nishiyama, 2000; Saitoh et al., 1996). Therefore, it is very 

essential to understand the mechanisms of urban growth in the Tokyo metropolitan area and 

make exploration of alternative pathways into the future through modeling the urban dynamics 

under the support of new theory and technology, CA, for instance. Moreover, since Japan is two 

or three decades or more time ahead of most of the developing countries of Asia (Sorensen, 

2000), a better understanding of the Japanese case, especially the Tokyo metropolitan area, may 

be special interest to geographers and planners in those countries, and more generally to those 

interested in comparative urbanization and urban planning study.  

Urban modeling for the Tokyo metropolitan area has been experienced for several decades. 

In 1983, the group of Nakamura at the university of Tokyo implemented the hierarchical 

Computer-Aided Land-Use Transport Analysis System (CALUTAS) for the Tokyo metropolitan 

area (Nakamura et al., 1983). The group later spread to Yokohama, where Miyamoto 

independently developed the Random-Utility URBAN model (RURBAN), an equilibrium land 

market model (Miyamoto and Kitazume, 1989; Miyamoto et al., 1986). These models typically 

belong to large-scale urban models. In 1993, Murayama adopted Markoff’s chain model to 

predict aggregated changes of the land-use at micro-level scale for the Tokyo metropolitan area, 

which was divided into several sub-areas according to orientation and distance to the center of 

the Tokyo (Murayama, 1993). In 2004, Arai and Akiyama estimated the land-use transition 

potential functions at a high-resolution scale in a case of study area in the northeast of the Tokyo 

metropolitan region, including the parts of Kashiwa, Abiko, Nagareyama, Matsudo city and 

Shonan town (Arai and Akiyama, 2004). However, they did not simulate the land-use change in 

this area using the explored functions.  

In 1998, a data set, “Detailed Digital Information (10m grid land-use) Metropolitan Area” of 

Tokyo was released by the Geographical Survey Institute of Japan. This date set provides 

essentially abundant information for studying on urban geosimulation using CA. Here, with the 

help of this kind of data set, this research focuses on the methodology of application of CA to 



 8

model spatial process of urban growth using the Tokyo metropolitan area as a case study. 

1.2 Objective of this study 

 The proposed objective of this study aims at gaining experience with the application of CA 

to model spatial process of urban growth in the Tokyo metropolitan area at high-resolution level 

so as to improve the methodology of urban modeling by investigating a number of questions: 

(1). Spatial scale 

According to O’Sullivan and Unwin (2002), as spatial pattern in any time is generated from 

corresponding spatial process, spatial model which aims at simulating the spatial process can be 

constructed through analyzing dynamic spatial patterns in time-series (O'Sullivan and Unwin, 

2002), which are affected by spatial scale (Qi and Wu, 1996; Turner et al., 1989). How about the 

effect of spatial scale on the result of pattern analysis of urban land-use changes and how to 

select appropriate spatial scale for urban geosimulation models? 

(2). Land-use classification system 

 Urban land-use pattern occurs not just at certain scale, but also at certain land-use 

classification system. Cities are complex emergent systems, consisting of a more or less dense 

scattering of urban activities in the space which contains them. Land-use classification mostly 

comes from the understanding of urban activities. Most literatures concerning spatial models of 

urban land-use change just choose their own urban land-use classification system in terms of 

their own purpose in their research with no theoretical justification (Barredo et al., 2003; White 

and Engelen, 1993; White et al., 1997). Klosterman (2005) has pointed out that the number of 

land-use classes which can be projected and the scale at which they can be projected vary 

substantially for the different types of models (Klosterman, 2005). How do the different 

classification systems affect the analysis of urban land-use pattern? How is appropriate land-use 
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classification system selected for modeling the spatial process of urban growth? 

(3). Transition rules 

 In a CA-based model transition rules describe how the state of each cell change over time 

based on local scale interactions. The richness of patterns that can be generated is impressive, but 

at the same time this implies that the selection of the right set of rules is a very critical part of 

developing the model. Finding a suitable set of transition rules is a tedious procedure which 

requires much time of the model builder. This research strives hard to make progress in this field, 

especially in identifying neighborhood interactions.  

(4) Model calibration 

 A spatial model needs calibration. Usually calibration is called as the process of 

experimentation connected with the design of the model. The chief purpose of calibrating the 

model is to estimate the value of parameters which control the model’s locational simulation, and 

the repercussions of activity through time. Calibration of high-resolution urban models is 

complex due to the many interacting coefficients that do not necessarily yield unique solutions: 

different processes (rule sets) may lead to identical patterns (Verburg et al., 2004).  

 All the problems mentioned above puzzle the construction of urban geosimulation models 

using CA coupled with GIS. Study of these problems behind the construction of spatial model, 

which is an important part of research in GIScience, can even viewed as part of the science, if 

not part of the system (Goodchild, 1992). 

1.3 Structure of the research 

 This dissertation is organized into five chapters. The research flowchart, which outlines the 

flow of the study, is illustrated in Figure 1.1.  

 Chapter one introduces a general overview of the study. This includes the problem  
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Figure 1.1 Research flowchart 

Introduction 
 Problem statements 

 Objective of the research 

Chapter one

Literature reviews 
 

 Modeling approach 

 The history of urban modeling 
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Characteristics of the spatial process 

of urban growth in the Tokyo 

metropolitan area 

Chapter three

Modeling spatial process of urban growth 
 

 Model design 

 The identification of spatial scale 

 The identification of urban land-use classification system 

 Neighborhood interactions model 

 Model calibration 

 Model implementation 

 Simulation and prediction of the spatial process of urban growth 

in the Tokyo metropolitan area 

 Results and discussions 

Chapter four

Conclusions 

Chapter five
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statements, the main objectives and a brief outline of the structure of the research.  

Chapter two provides the theoretical and methodological discussions that are relevant to this 

research. Firstly the necessity of modeling approach in the field of geographical domain is 

emphasized. Then the history of urban modeling is reviewed. The history of urban modeling can 

be divided into three phases according to the characteristics and spatial scale level of the models: 

static urban models, large-scale urban dynamic models, and urban geosimulation models. The 

characteristics of urban models in every phase are theoretically probed. Especially, from the 

viewpoint of the complexity of urban systems, this chapter focuses on the necessity and 

feasibility of the application of CA to modeling spatial process of urban growth. Some 

representative urban geosimulation models based on CA are reviewed, and the problems, 

prospects and modifications of CA for urban geosimulation are illustrated. 

Chapter three analyzes the situation and limitation of urban analysis using remote sensing 

technique, and introduces the advantages of the data set “Detailed Digital Information (10m grid 

land-use) Metropolitan Area” of Tokyo in urban analysis. As a case study, the characteristics of 

urban growth in the Tokyo metropolitan area are addressed in terms of fractal dimension and 

spatial metrics respectively. 

Chapter four looks at the construction of the spatial model proposed in this research for 

catching the spatial process of urban growth. Based on the principle of the application of CA to 

urban geosimulation, the concept of constrained CA-based model is put forward in this chapter. 

Two essential problems – identification of spatial scale and urban land-use classification system - 

in the model are theoretically elaborated in terms of spatial autocorrelation index. An alternative 

model proposed in this research for catching the neighborhood interactions effect in urban 

geosimulation is discussed in detail. This chapter also describes the processes of calibration for 

the spatial model. The model is carried out for simulating the spatial process of urban growth in 

the Tokyo metropolitan area, and the results and discussions are presented in this chapter.  

 Chapter five concludes the main findings of the study in relation to the research objectives. 
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Some perspective suggestions for further research are offered in this chapter.  
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Chapter Two 
Theoretical consideration and 

literature reviews 

2.1 Review of urban modeling 

2.1.1 Modeling approach 

Many of the theories developed by social scientists are more accurately described as models, 

as they consist of a series of interconnected hypotheses, rather than a set of empirically validated 

laws (Macmillan, 1989). A model is a simplified representation of an object of investigation for 

purpose of description, explanation, forecasting of planning (Fotheringham and Wegener, 2000). 

A spatial model is a model of an object of investigation in bispace (space, attribute). A 

space/time model (or dynamic spatial model) is a model of an objective of investigation in 

trispace (space, time, attribute). A model is also an idealized representation of reality, in order to 

demonstrate certain of its properties. Such idealized representations are abstractions of reality 

and omit certain unimportant details. The process of model building, therefore, represents a 

procedure for making these abstractions (Thomas and Huggett, 1980).  

Modeling has become an important branch of scientific endeavor as the approach plays a 

vital role in science exploration (Cadwallader, 1996; Fotheringham and Wegener, 2000) and 

helps human being to effectively understand and plan the Earth and the world for the future.  



 14

Lambin et al. (2000) have pointed out that modeling, especially if done in a spatially-explicit, 

integrated and multi-scale manner, is an important technique for the exploration of alternative 

pathways into the future, for conducting experiments that test our understanding of key processes, 

and for describing the latter in quantitative terms (Lambin et al., 2000).  

In geographic domain, as most geographic phenomena are not easily experimented with on 

the ground, and the data are once-off and observational, with no opportunity to conduct repeated 

trials, realistic but synthetic computer simulations through modeling can be built, however, as a 

laboratory for exploring ideas and plans that we would not otherwise be able to effect on the 

ground. Modeling can be used as a planning support system (PSS), to pose what-if questions and 

evaluate likely or alternative outcomes. 

2.1.2 Urban modeling: theories and practices 

 Urban models attempt to describe urban system using mathematical equations. They provide 

a simplified and abstract view of some aspect of the urban system and deal with the allocation 

and interaction of land-use activity in cities and regions. Urban modeling is a practical approach 

to urban analysis which firstly seeks to understand and describe the mechanisms which govern 

the structure and behavior of the urban system and secondly to predict the outcome of future 

policy decisions (Foot, 1981).  

 Urban models have quite a short history of development because they deal with large 

quantities of the data which can only be processed by computer. As the computer has been 

developed, increase in size and become generally available to all urban analysts, urban modeling 

has followed a similar course. Prior to the advent of computer in the late 1940s, some significant 

works about the morphology and evolution of cities had been done and a number of classical 

theories had been developed. Despite these theories could not been recognized as “true” urban 

models, undoubtedly they provided basis to further urban modeling (Batty, 1971). Research of 

urban modeling can be classified into three phases according to the characteristics and scale level 
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of models: static urban models, large-scale urban dynamic models, and urban geosimulation 

models.  

 (1). Static urban models 

 The early development in urban modeling was in transportation planning in the USA in 

order to try and study scientifically organized way the traffic problems arising from the 

enormous increase in car ownership (Batty, 1971; Foot, 1981). These models were 

representatives of partial models which deals with one part or subsystem of the overall urban 

system (Foot, 1981). These models were highly successful and led to more ambitious attempts to 

model other subsystems of the urban system such as the housing market and the location of 

retailing activity.  

 Consequently, model builders began to build more general models, which consider a number 

of subsystems, attempting to integrate the housing, retailing, and industrial sectors with the 

transport system. These models were first developed in the early 1960s in North America and 

followed previous developments in transportation systems analysis. The chief focus of this 

research was on the spatial variation of the pattern of activities such as population and 

employment and on the interactions between such activities. The technique of modeling 

interaction using the so-called gravity model, derived by analogy with the Newtonian concept of 

gravity, like Lowry model (Lowry, 1964) and Garin-Lowry model (Grain, 1966), and with the 

concept of entropy in statistical mechanics (Wilson, 1968), was central to much of this research 

and reflected the concern of the model builders with the interdependencies within the urban 

system (Batty, 1971). These models provided the clearest ideas of urban systems theory, which 

sough into integrate different activity systems according to spatial interactions that were 

embedded in demographic-economic frameworks (Batty, 1994).  

 In these models an important problem exists: concept. Nearly all models designed in this 

phase describe the city as a static system. Such models simulate the structure of the city at one 
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point in time but ignore the processes which have generated the structure. This means that these 

models are static urban models. However, city is a dynamic system (Forrester, 1969). So in 

building such static models, model builders have encountered severe problems which were 

concerned with the measurement and observation of certain variables. It is extremely difficult, 

for example, to find suitable variables which measure locational attraction in a static sense, for 

continual changes in such variables with time account for the present structure of the city 

(Broadbent, 1970). Furthermore, because these models lack historical perspective, they are 

difficult to use in forecasting (Batty, 1970).  

 Nevertheless, it was not that static model builders were not conscious of the necessity of 

making dynamic urban models. For instance, Lowry himself clearly understood that his model 

should become dynamic (Lowry, 1964). Batty (1971) analyzed two reasons of why dynamic 

models did not come into being in this phase. First, in building such models, cities are usually 

divided into homogeneous areas or zones, and the smaller the size of zones, the greater is the 

descriptive power of the model. But as the number of zones increase, more and more detailed 

data are needed and computer storage requirements increase, often exponentially. Second, it is 

difficult to collect the necessary time series data required in testing and validating the models. 

These difficulties in observing the processes of change have also led to problems in formulating 

meaning hypotheses about the dynamics of cities and setting up relevant experiments.  

(2). Large-scale urban dynamic models 

 With the development of computer science and technology, large-scale urban dynamic 

models appeared in late 1960s. In this phase, there are two precursors who are worthy of mention: 

Crecine and Forrester. In 1968, Crecine presented the time oriented metropolitan model which 

was designed to simulate changes in the structure of activities in time intervals of 5 years or 

more (Crecine, 1968). Forrester’s model is based on his concepts of industrial dynamics and 

simulates the processes of change in a hypothetical city in 5 years intervals over a 250 years 
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period (Forrester, 1969). These models typically yield results that are relatively complex, both 

temporally and spatially. In this approach, the focus is on the process, which may or may not 

lead to a stable equilibrium; but, in any case, these models do not depend on an assumption of 

equilibrium. Figure 2.1 shows the simulation result of one city using Forrester’s model of urban 

dynamics, which is a representative export of large-scale urban dynamic models. The model is, 

however, not spatial and does not recognize that the structure of activities in a city can be 

explained in terms of spatial interaction. Moreover, although these models show that the 

dynamic processes in the cities can be simulated, at least in part, the models are not 

comprehensive in their treatment of both time and space as essential determinants of the 

structure of cities (Batty, 1971), and it is impossible to achieve more than a very crude spatial 

resolution. Subsequently, Wilson (1970) published his dynamic model which modified spatial 

interaction model by entropy-maximizing methodology (Wilson, 1970). Batty (1971) designed a 

dynamic model at the University of Reading to simulate the changing structure of activities and 

interactions between activities at intervals of one year over a 15 years period (Batty, 1971).  

 The 1970s was also a turbulent time for urban modeling; as a field of research, urban 

modeling drew heavy criticism in that period and was all but written off as a failure. In 1973, a 

publication entitled as “Requiem for large-scale models” by Lee (1973) deprecated the equally 

ambitious attempts to develop large-scale computer models of the metropolis in perspective in 

urban planning context (Lee, 1973). However, these criticisms did not stop the design of urban 

models. With the development of computer science and technology as well as the application of 

new ideas, a lot of new models and demonstrations were implemented by many workers (Allen 

et al., 1984; Allen and Sanglier, 1979a; Clarke and Wilson, 1983; Dendrinos and Sonis, 1990; 

Haag, 1989; Nijkamp and Reggiani, 1992; Weidlich and Haag, 1987). Especially, Wegener (1994) 

indicated the pomp of urban modeling through a world map of urban modeling centers at the 

twenty years after the Lee’s criticisms in 1973 (Wegener, 1994). In his paper, twelve 

contemporary operational urban models were evaluated, using as criteria comprehensiveness, 
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Figure 2.1 Dynamics of population and housing in Forrester’s model of urban dynamics 

(Source: Forrester, 1969) 
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overall structure, theoretical foundations, modeling techniques, dynamics, data requirements, 

calibration and validation, operationality, and accrual and potential applications. It is shown that 

most of the criticisms of the Requiem have been made redundant by advances in data availability 

and computing technology.  

 Much of these works, however, although alluding to disaggregate locational structures in 

cities, has been pitched at the traditionally macrolevel and thus it has been hard to develop 

coherent explanations of the king of changes emerging from the smallest scales which 

subsequently restructure the macroform of the system (Batty, 1998). This kind of cognition on 

urban phenomena motivated the emergence of urban geosimulation models at micro-scale level.  

(3). Urban geosimulation models 

 Urban geosimulation models differ from conventional urban models in its constituent 

“elements”. They operate with human individuals and infrastructure entities, represented at 

spatial nonmodifiable scales such as households, homes, or vehicles. In geosimulation models, 

these objects behave. Many of these objects are animated (visually and dynamically), and that 

animation drives the behavior of inanimate objects in a simulation. In Batty’s paper, “New ways 

of looking at cities”, published in 1995, he pointed out that those “from top to down” large-scale 

urban models are being gradually replaced by these “from the bottom up” models which based 

on local spatial interactions of individual activities (Batty, 1995).  

 CA - based models (Tobler, 1970), DLA (diffusion-limited aggregation) (Batty and Longley, 

1994), percolation model (Makse et al., 1995), and multiagent-based models (Benenson and 

Torrens, 2004) fall into this kind of urban models. Although other models have their advantages 

in simulating urban dynamics, undoubtedly CA has led the stream of urban modeling research in 

this phase as it has attracted the attention of numbers of scientists in both research aspects of 

theory (Batty, 1998; Batty and Xie, 1994; Clarke et al., 1997; Couclelis, 1985; Couclelis, 1997; 

Dietzel and Clarke, 2006; Fang et al., 2005; Itami, 1988; O'Sullivan and Torrens, 2000; Phipps, 
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1989; Tobler, 1970; Tobler, 1979; Torrens and David, 2001; Wagner, 1997; White and Engelen, 

1993; White and Engelen, 1997; Yeh and Li, 2006) and application (Batty et al., 1999; Silva and 

Clarke, 2002; Straatman et al., 2004; Ward et al., 2000; White and Engelen, 1994; White and 

Engelen, 2000; White et al., 1997; White et al., 1999; Wu, 1996; Wu, 1998a; Wu, 2002; Xia and 

Yeh, 2000; Yeh and Xia, 1998; Yeh and Xia, 2001; Yeh and Xia, 2002). Compared with other 

kinds of models, CA have many advantages for modeling urban phenomena, including their 

decentralized approach, the link they provide to complexity theory, the connection of form with 

function and pattern with process, the relative ease with which model results can be visualized, 

their flexibility, their dynamic approach, and also their affinities with geographic information 

systems and remotely sensed data (Torrens, 2000). This research focuses on the methodology of 

the application of CA to modeling spatial process of urban growth.  

2.2 Cellular automata-based urban modeling 

2.2.1 Cellular automata as a framework for modeling 

complex spatial systems 

2.2.1.1 Formal definition of CA 

The invention and early development of the CA framework took place in the 1950s and 

1960s and is generally associated with famous names and great discoveries of the twentieth 

century (Benenson and Torrens, 2004). Its former form can ascents to Alan Turing’s 

“Computational machine” (Turing, 1936) and John von Neumann’s self-reproducing artificial 

structures (von Neumann, 1951). The formal definition of cellular automata (originally “cellular 

space”) offered in von Neumann’s lecture of 1951 (von Neumann, 1951) is just the same as the 

definitions used today. Under von Neumann’s scheme a CA is defined as a one- or 
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two-dimensional grid of identical automata cells. Each automata cell processes information, and 

proceeds in its actions based on the knowledge received from its environment and following 

rules that it stores or holds internally. Each cellular automata A is defined by a set of states S = 

{S1, S2, …, SN} and a set of transition rules T, as well as a set of cells (in the neighborhood R) 

neighboring the cellular automata A:  

),,(~ RTSA         (2.1) 

Transition rules define an cellular automaton’s state, St+1, at time step t+1 depending on its state, 

St (St, St+1∈S), and the neighborhood R, at time step t: 

1),(: +→ ttt SRST        (2.2) 

 In a one-dimensional CA, neighborhoods R typically consist of two cells, one on the left and 

one on the right of a target automaton; wider neighborhoods, including two cells on each more 

cells on each side are also considered (Benenson and Torrens, 2004) (Figure 2.2).  

 Two-dimensional CA are usually considered on a square grid, and the neighborhood consists 

typically of four or eight adjacent cells, which are often referred to as the von Neumann (1951) 

and Moore (1964) neighborhoods, respectively (Figure 2.3); wider neighborhoods are also often 

used, especially in applications to natural systems (White and Engelen, 1993). 

2.2.1.2 Cellular automata as a framework for modeling complex spatial 

systems 

 Early CA were proposed and used to explore the probability of both self-reproducing and 

computationally universal that is able to reproduce any recursive function, in nature. In this 

phase Ulam, von Neumann and Turing had done excellent original works (Rucker, 1999; Turing, 

1936; von Neumann, 1951). But after that, especially during 1960s, public interest in CA 

hovered less over mathematic publications, and gradually decayed. 

 The 1960s and 1970s played host to the rise of general system theory (Benenson and Torrens, 

2004). Far-from-equilibrium and self-organizing systems (Haken, 1983; Prigogine, 1967)  
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Figure 2.2 Typical neighborhood configurations of one-dimension cellular automata. (a) 

Neighborhood consists of two cells on the left and on the right of a given cell; (b) 

Neighborhood consists of two cells on each side of the given cell 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Typical neighborhood configurations of two-dimension cellular automata. (a) Von 

Neumann 3×3 neighborhood; (b) Moore 3×3 neighborhood; (c) Von Neumann 5×5 

neighborhood 
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became hot topics in natural science. Systems of nonlinear differential equations have been 

applied to socioeconomic systems of all level, from the world as a whole to regional and cities 

(Benenson and Torrens, 2004). This period provided opportunity for the revival of CA.  

 Revival in interest came at the beginning of 1970, amid the popularity prompted by Martin 

Gardner’s presentation of John Horton Conway’s model of “Life” (Gardner, 1970; Gardner, 

1971). Conway’s initial motivation was to design a simple set of rules to study the microscopic 

spatial dynamics of population. Aware of the computational university of CA and their ability to 

generate complex spatial structures, Conway looked for rules that were simple, but generated 

population dynamics that were not easily predicted or expected. He succeeded! The simple rules 

of the Game of Life which was designed by Conway support fantastic variation in patterns of 

growth in a simulation. Generally stated, the Game of Life introduced CA as an interdisciplinary 

tool for representing complex spatial systems and investigating their dynamics. Wolfram (1994) 

has also systematically discussed the relationship of CA and complexity. 

2.2.2 Complex urban dynamics 

 Cities are complex objects (White and Engelen, 1993), like most geographical phenomena, 

as they always exhibit several of the intrinsic characteristics of complexity: fractal 

dimensionality, self-similarity, self-organization and emergence (Torrens, 2000; Torrens and 

David, 2001). From local-scale interactions such as individual movement habits, the 

geomarketing strategies of retail establishments, social biases, and residential and lifestyle 

choices, large-scale and at least partially ordered patterns emerge in the aggregate. Peak-hour 

congestion, specialist retail areas, social segregation, and distinctive neighborhoods may all be 

regarded as patterns in this sense. These aggregate patterns often emerge apparently and 

independently of the dynamics driving the individual components of the system.  

 Cities, like some other social open systems, tend to be ordered, at least in the sense of urban 

land-use patterns (Barredo et al., 2003). This kind of systems has been defined as self-organizing. 
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Self-organization in dynamic systems establishes the tendency for system structures to develop 

ordered patterns, often on a large scale (Krugman, 1996; Torrens, 2000). The ordered properties 

of cities have been studied by using fractal dimension (Frankhauser and Sadler, 1991; White and 

Engelen, 1993; White et al., 1997) or radial dimension (Frankhauser and Sadler, 1991) as a 

measure of order.  

 The fact that cities do have fractal structure also introduces the concept of self-similarity. By 

this definition, fractal objects are self-similar. New area in cities shows patterns which often are 

indistinguishable from the previous patterns and from the whole of the city, moreover the 

structure of the pattern is independent from scale (Torrens, 2000; Wolfram, 1994).  

2.2.3 Cellular automata-based urban modeling 

2.2.3.1 Brief review of CA-based urban modeling 

In complex emergent systems, like cities, a small number of rules applied at local level are 

capable of generating surprising complexity in aggregate form (Torrens, 2000). The ordered 

large-scale patterns of urban land-use are developed from these local-scale interactions. 

Depending on the nature of these local-scale interactions, the large-scale ordered patterns will 

take their form, structure, shape and/or behaviors. It is cellular automata, which act as the agency 

between such large-scale patterns and local-scale interactions. This approach-based models differ 

from conventional urban models in its constituent ‘elements’ (Benenson and Torrens, 2004). 

They operate with human individuals and infrastructure entities, represented at spatially non 

modifiable scale such as households, homes, or vehicles. Many of these objects are animated 

(visually and dynamically), and that animation drives the behavior of inanimate objects in a 

simulation. The idea behind using urban CA models to study complexity is to look at the simple 

ingredients of complexity that was found in cities.  

White and Engelen (2000) have analyzed a number of reasons for the attractive application 
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of CA in urban modeling: 

1) they are inherently spatial; typically they are defined on a raster cell space and are thus 

compatible, or can be made compatible, with most spatial data sets; 

2) they are dynamic, and can thus represent spatial processes in a direct way; 

3) they are highly adaptable – they can be set up to represent a very wide range of 

situations and processes; 

4) they are rule based, and can thus capture a wide variety of spatial behaviors; 

5) they are simple, and thus computationally efficient; and 

6) in spite of their simplicity, they can exhibit extraordinarily rich behavior; some simple 

CA have been shown to be formally equivalent to a Turing machine, i.e. these CA can 

represent and execute any possible algorithm. 

 Informal cell-space modeling of urban development was demonstrated by Tobler (1970) in 

his animation of the growth of Detroit which he eventually formalized in his definition of 

cellular geography (Tobler, 1975; Tobler, 1979). Albin (1975) also introduced CA and 

multi-agent system as a tool for investigating complex socioeconomic systems (Albin, 1975).  

 The 1980s can be classified as the phase of theoretical discussions for the application of CA 

to urban geosimulation. In this phase, Couclelis was one of trailblazers (Couclelis, 1985; 

Couclelis, 1988; Couclelis, 1989). She demonstrated how CA might be used as an analog or 

metaphor to study how different varieties of urban dynamics might arise, and explored the 

potential of CA in an urban planning environment as well as the theoretical obstacles to 

incorporating CA models in a geographical context. Subsequently, a few authors (Itami, 1988; 

Phipps, 1989) also introduced CA, as an approach, to the geographic public. These developments 

paved the way for acceptance of CA as a modeling tool, capable of substituting regional models.  

 In the early 1990s, CA-based operational urban models began to appear. Especially in last 

decade, CA have been in very popular use for urban simulation. Where, three kinds of models 

are worthy of mention: Constrained cellular automata, Life cellular automata and Self-modifying 
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cellular automata.  

 Constrained cellular automata of land-use dynamics firstly came from White and Engelen’s 

work in 1993 (White and Engelen, 1993). The approach merges the cellular space models of the 

1960s with Tobler’s geographic model (Tobler, 1979) and implements the assumption that the 

potential of a land cell to undergo a certain land-use transformation in each iteration depends on 

the states of extended cell’s neighborhood. However, this process of transformation of the state 

of a land cell is subjected to a constraint of urban growth which depends essentially on its 

position in a larger exogenous urban-economic system (White et al., 1997). This concept 

provides the probability of connecting the microlevel models with large scale models. This 

model became the mainstream CA application in geography (Benenson and Torrens, 2004) and 

widely used in simulation of a lot of regions and cities in the world (Barredo and Demicheli, 

2003; Barredo et al., 2003; Straatman et al., 2004; White and Engelen, 1997; White and Engelen, 

2000; White et al., 1997; White et al., 1999; Yeh and Xia, 2001; Yeh and Xia, 2002). This 

research also adopts the concept of constrained cellular automata.  

 Life cellular automata models were proposed by Batty and Xie (Batty and Xie, 1994). This 

model is named ‘Life’ cellular automata here because approach of this model came from the idea 

of Conway’s the Game of Life. They endow the cells in certain area with ‘life’ like other critters. 

The life of cells is nondeterministic in that births and deaths amongst the configuration of active 

cells at time t are computed stochastically. Births of cells are determined by the cells acting as 

single parents and are eventually located with respect to neighborhood, while cells die as a 

function of a system-wide rate, not as a function of what is happening in their locality. This 

model mostly aims at explore the characteristics of the emergence, development, and decay of a 

city as an object (Batty, 1998; Batty et al., 1999).  

 Self-modifying cellular automata designed by Clarke and co-authors (Clarke et al., 1997) 

takes a diffusion-based view of urban development, not only assuming unitary cells, but also 

diffusion of more complex urban entities as a whole. In this model, five factors are designed to 



 27

control the behavior of the system: Diffusion, Breed, Spread, Slope resistance, and Road Gravity. 

Urban growth rate is the sum of the four different types of urban growth defined in the model: 

spontaneous, diffusive, organic, and road influenced under the action of the five factors above. A 

general heuristic CA model based on the concept has been built by Clarke and his colleagues, 

called SLEUTH (Slope, Land-cover, Exclusion, Urban, Transportation, and Hill shade). 

Beginning in 1997 with simulations of Santa Barbara in California, the model has now been 

applied to other regions of the United States, as well as cities elsewhere in the world (Leao et al., 

2001; Silva and Clarke, 2002; Xian and Crane, 2005; Xian et al., 2005).  

2.2.3.2 Future prospects of CA-based urban modeling 

 Although CA have become very popular recently in urban geosimulation field, cellular 

automata modeling is still in its infancy and at a development phase (Torrens and David, 2001). 

Torrens and David (2001) discussed several key areas on which those working with urban CA 

might focus future efforts and build upon existing success: explorations in spatial complexity, 

infusing urban CA with theory, exercises in education and outreach, the development of hybrid 

model structures, and now strategies for validating cellular urban models. Besides these areas 

above, other issues, which are associated with the primal definition of CA in urban 

geosimulation, are discussed here: spatial scale, the cell states, and the neighborhood. 

 Spatial scale 

 Rectilinear grid systems adopted in most urban CA models have obvious advantages both in 

terms of compatibility with raster-based data systems and computational efficiency. However, 

most grid space is typically assumed to be homogeneous, and usually different models adopted 

different grid size (Barredo et al., 2003; Clarke et al., 1997; White and Engelen, 1993). 

Questions like how the difference of spatial scale affects the understanding of urban dynamics 

and how to select appropriate grid size in the context of cellular automata modeling need to be 

further investigated.  
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 The cell state 

 In urban models cell states most commonly represent land-cover and land-use categories 

although sometime they may be used to represent population density levels (Wu, 1998b) or other 

features. But the question that how different land-use categories would impact the understanding 

of urban dynamics, especially in terms of certain spatial scale, still remains.  

 The neighborhood 

 The transition rules are the heart of CA. They represent the logic of the process which is 

being modeled, and thus determine the spatial dynamics which result. The local interactions for 

one cell in the neighborhood play a fundamental role in the transition rules of CA-based urban 

models. However, the neighborhood in different models keeps different in size and shape. The 

problem of how to evaluate the local interactions should be further explored.  
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Chapter Three 
Urban growth in the Tokyo 

metropolitan area 

The period of High Economic Growth which began in the latter half of the 1950s led to a 

massive migration of population from rural to urban areas in Japan (Murayama, 2000). The 

population concentration into Tokyo and its circumjacent prefectures, like the area including 

Tokyo, Saitama, Ibaraki, Chiba, and Kanagawa prefecture, was particularly noteworthy. Figure 

3.1 shows the population increase in this area from 1920 to 2000. It is obvious that the growth 

rate of population from 1950 to 1975 is higher than that from 1920 to 1950. Although the rate 

from 1975 to 2000 declined a little, the increment reached more than 5 million in amount. And 

the increase would keep up from 2000 to 2015 (Figure 3.2). Accompanying the population 

increase, a rapid expansion of built-up area into the surrounding area occurred. For instance, 

Figure 3.3 shows the processes of urbanized area encroaching non-urbanized area in the Tokyo 

wards area from 1910 to 1975. Obviously, the urbanized area almost occupied all the 23 wards 

by 1975. After that time, the urbanized area mostly grew in the area out of the wards. The 

urbanized area would keep on extending in the future with the trend of the population increase in 

this area. 
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Figure 3.1 The population increase in the area including Tokyo, Saitama, Ibaraki, Chiba, and 

Kanagawa prefecture from 1920 to 2000  

(Source: Population Census of Japan) 
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Figure 3.2 Projection of the population in the area including Tokyo, Saitama, Ibaraki, Chiba, and 

Kanagawa prefecture from 2000 to 2015  

(Source: National Institute of Population and Social Security Research) 
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Figure 3.3 Urban growth in the Tokyo wards area from 1910 to 1975 

(Source: Gallion and Eisner, 1975) 
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3.1 Study area 

The study area in this research consists of the region of restricted urbanization and suburban 

development zones governed by the National Capital Region Development Act (Figure 3.4). This 

area is located in the area including Tokyo, Saitama, Ibaraki, Chiba, and Kanagawa prefecture, 

192 cities (towns) with 8264 km2 (Geographical Survey Institute, 1998). Here, this area is 

defined as the Tokyo metropolitan area. It is assumed that this kind of definition does not affect 

the cognition of CA-based model of spatial process of urban growth proposed in this research. 

Urban growth is a direct result of population concentration or life-style changes of people 

(Qadeer, 2004; Smailes, 1975), which can be expressed as the expansion of urbanized area, also 

the increase and diffusion of population density in urbanized area (Li et al., 2003; Tobler, 1970). 

Because this research is mostly concerned about modeling spatial processes of the land-use 

changes from agricultural or forest land to built-up or resort area where is related with people 

who do not lie on the traditional agrarian works any more, urban growth is interpreted as the first 

expression, viz. the transformation of land-use from agricultural or forest land (non-urbanized 

area) to built-up or resort area (urbanized area). 

3.2 Data set 

Although land-use and land-cover always are mentioned together, the definition of them is 

different. Barnsley et al. (2001) refer to land-cover as “the physical materials on the surface of a 

given parcel of land (e.g. grass, concrete, tarmac, water),” and land-use as “the human activity 

that takes place on, or makes use of that land (e.g. residential, commercial, industrial)” (Barnsley 

et al., 2001). Land-use can consist of varied land-covers, (i.e. a mosaic of biogeophysical  
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Figure 3.4 Study area 
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materials found on the land surface). For instance, a single-family residential area consists of a 

pattern of land-cover materials (e.g. grass, pavement, shingled rooftops, trees, etc.). The 

aggregate of these surfaces and their prescribed designations (e.g. park) determine land-use 

(Andersen et al., 1976). Therefore, land-use is an abstract concept, constituting a mix of social, 

cultural, economic and policy factors.  

 Cities are reflection of economic, environmental, technological, and social processes. Urban 

growth intuitively leads to the land-cover change at the macro or regional scale. However, the 

growth is the result of a complex process of land-use in nature considering the interaction and 

the change of different urban land-use types, such as industrial, residential, commercial and so 

on. Therefore, understanding, representation and modeling of the complex urban system entail 

very detailed data ranging from environmental and ecological parameters to socioeconomic 

information, and land-cover and land-use data with known spatial and temporal accuracy (Clarke 

et al., 2002). Important data sources are the censuses collected by governments, and by planning 

agencies (Fagan et al., 2001; Foresman et al., 1997; Wegener, 1994). However, there are 

problems associated with such spatial social data. Herold et al. (2003) discussed such problems 

including: they do not have a uniform global availability – they are frequently unavailable for 

developing nations; spatial social data may be classified or available only through private or 

restricted government sources; they can have poor temporal accuracy and consistency, and they 

often contain the wrong thematic representations for objective urban analysis.  

Remote sensing techniques have already showed their value in mapping urban areas, and as 

data sources for the analysis and modeling of urban growth and land-use change (Batty and 

Howes, 2001; Clarke et al., 2002; Treitz and Rogan, 2004). Remote sensing provides spatially 

consistent data sets that cover large areas with both high spatial detail and high temporal 

frequency. Batty and Howes (2001) have emphasized the importance of remote sensing as a 

“unique view” of the spatial and temporal dynamics of the process of urban growth and land-use 

change. However, land-use has little physical importance with respect to reflectance properties, 
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and hence has a limited relationship to remote sensing. Remote sensing data record the spectral 

properties of surface materials, and hence, are more closely related to land-cover. In short, 

land-use cannot be measured directly just from remote sensing, but rather requires visual 

interpretation or sophisticated image processing and spatial pattern analyses to derive land-use 

from aggregate land-cover information coupled with other ancillary data (Cihlar and Jansen, 

2001). Integrated analyses within a spatial database framework (e.g. GIS) or field works are 

often required to assign land-cover to appropriate land-use designations. This is a tiresome work 

taking cost and time. Especially in urban areas it is more difficult due to the heterogeneity and 

small spatial size of surficial materials, which leads to significant subpixel mixing (Foody, 2000; 

Ridd, 1995). This problem becomes exacerbated when discrimination of multiple classes is 

necessary (Stefanov et al., 2001). This may be one of the reasons why the study area was always 

divided as built-up area and non-built-up area only in many literatures of urban growth 

modeling. 

The data set “Detailed Digital Information (10m grid land-use) Metropolitan Area” of Tokyo 

(DDIMA10m) provides abundant and detailed urban land-use classifications including a variety 

of socio-economic information at a series of time. This data set was produced by the 

Geographical Survey Institute, the Ministry of Construction of Japan. It has the data on the 

category of land-use of each 10 meters square cell, surveyed in 1974, 1979, 1984, 1989, and 

1994. In this data set, the land-use classification system has a hierarchical structure, and is 

divided into three levels: levels one, two and three. The number of the categories is 15 in level 

three, namely (A) forest & wasteland, (B) paddy field, (C) dry field & other farmlands, (D) land 

under construction, (E) vacant land, (F) industrial land, (G) low-storey residential land, (H) 

densely developed low-storey residential land, (I) medium and high-storey residential land, (J) 

commercial land, (K) road, (L) park, (M) public facility, (N) water, and (O) the others. The 

land-use classification system is shown in Table 3.1. 

The DDIMA10m is selected as a primary data set for this research.  
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Table 3.1 Land-use classification system in the data set of DDIMA10m 

Land-use classification system 
Code 

Level one Level two Level three 
Description 

A Forest & wasteland 
Forest area, bamboo forest, weed area (abandoned 
cultivation area is included), barren land and golf-course 
etc. 

B Paddy field Paddy field for paddy rice, lotus and so on. Short-term 
fallow field and cropland with season are included 

C 

Forest or 
agricultur-
al land Agricultural 

land 
Dry field & other 
farmlands 

Dry field, orchard, mulberry field, tea garden, nursery 
stock field, ranch, and other farmlands associated with 
pasturage, barn and greenhouse 

D Land under construction The land where artificial alteration is under the way 
towards residence, industry or commerce 

E 

Arranged 
land 

Vacant land 

The land where rearrangement was done artificially, but 
is not utilized presently. The outside parking zone, golf 
practice place, tennis coat and the materials yard etc. are 
included 

F Industrial land 
Including production factory, fabrication plant, repair 
shop, the warehouse, the raw materials yard, the 
products yard and the welfare facilities etc. 

G Low-storey 
residential land 

Build-up area for residence with buildings below three 
floors, where area of one division is more than 100 sq. 
m. Homestead woodland is included 

H 
Densely developed 
low-storey 
residential land 

Build-up area for residence with buildings below three 
floors, where area of one division is less than 100 sq. m.

I 

Residential 
land 

Medium and 
high-storey 
residential land 

Build-up area for residence with buildings more than 3 
floors 

J 

Building 
land 

Commercial land 

Including retail store, supermarket, wholesale store, 
restaurant, hotel, cinema and theater, bank, amusement 
area, hotel and lodging, office of enterprise such as 
bond, insurance and trading company, newspaper 
company, circulation facility etc. 

K Road Road with effective width more than 4 meters, open 
space before station. Purchased land for road is included

L Park 
Park, zoo, arboretum, athletic competition facility, the 
hippodrome, baseball field, graveyard, recreational area, 
temple etc., which possess the public character 

M 

Public 
land 

Public facility 
Public office area, education and cultural facility, supply 
processing facility, social welfare institution, railroad 
site, bus center and garage, airport etc. 

N Water River, lake, marsh and the reservoir, fish farm, and 
seaside area etc. 

O The others 
Defense facility, USA military facility, training ground, 
facility and residential area which are related to the 
Imperial Family 

 
Source: Geographical Survey Institute, 1998 
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3.3 Characteristics of urban growth in the Tokyo 
metropolitan area 

City is a complex system (White and Engelen, 1993) which possesses its intrinsic 

characteristics like fractal dimensionality, self-similarity, self-organization and emergence 

(Torrens, 2000; Torrens and David, 2001). Purpose of urban model is to grasp the characteristics 

of the complex system. As this research focuses on the transformation of land-use from 

agricultural or forest land (non-urbanized area) to built-up or resort area (urbanized area) as 

discussed in section 3.1, in order to catch main characteristics of spatial process of urban growth 

in the Tokyo metropolitan area at the series of time from 1974 to 1994, when the data were 

provided in the data set of DDIMA10m, the study area is aggregated into three types of land-use: 

non-urbanized area, urbanized area, and water from land-use classification system at level three. 

Land-use category of (A) forest & wasteland, (B) paddy field, (C) dry field & other farmlands 

are aggregated into non-urbanized area; (N) water is retained; others are aggregated into 

urbanized area. Table 3.2 indicates the aggregation of land-use categories.  

In this study area, as the data in some cities were not surveyed in 1974, in order to keep 

consistency of urban growth analysis, the surveyed area in 1974 (about 6,300 km2, as shown in 

Figure 3.5) is set for analyzing. It is assumed that this setting would not greatly affect the 

understanding of main characteristics of the urban form changes in the Tokyo metropolitan area 

as this region which is set here covers main components of urbanized area.  

Spatial metrics and fractal dimension have shown advantages in catching characteristics of 

urban dynamics and been used to assess urban models (Barredo et al., 2003; Herold et al., 2005; 

Herold et al., 2003; White and Engelen, 1993; White and Engelen, 1994; Zhao and Murayama, 

2006b). Here both of them are selected to interpret the characteristics of spatial process of urban 

growth in the Tokyo metropolitan area for providing useful information to this research. 
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Table 3.2 Categories in original data set of and in urban growth analysis 
 

Categories in original data set Categories in urban growth analysis 
A. Forest & wasteland 
B. Paddy field 
C. Dry field & other farmlands 

1. Non-urbanized area 

D. land under construction 
E. Vacant land 
F. Industrial land 
G. Low-storey residential land 
H. Densely developed low-storey residential land
I. Medium and high-storey residential land 
J. Commercial land 
K. Road 
L. Park 
M. Public facility 
O. The others 

2. Urbanized area 

N. Water 3. Water 
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Figure 3.5 Land-use and urban growth in the Tokyo metropolitan area from 1974 to 1994. (a) 

land-use in 1974; (b) land-use in 1994; (c) urban growth from 1974 to 1979; (d) 

urban growth from 1979 to 1984; (e) urban growth from 1984 to 1989; (f) urban 

growth from 1989 to 1994 
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3.3.1 Characteristics of urban growth in terms of fractal 

dimension 

As non-linear systems, the dynamics and rules of pattern generation and evolution of cities 

show their own characteristics. Self-organization is one of the main characteristics, which 

establishes the tendency for system structures to develop ordered patterns, often on a large scale 

(Krugman, 1996; Torrens, 2000). Fractal dimension (Appendix) has been as a measure to study 

the ordered properties of cities (Frankhauser and Sadler, 1991; White and Engelen, 1993). Based 

on the obtained fractal dimensions, cities can be defined as bifractal objects into two zones. The 

inner zones is more organized and the outer zone less organized or still evolving. In the inner 

zone, the transformation process has reached, or it is near to, the maximum level of organization 

accessible to the system. It means that the system has reached a sort of equilibrium and the urban 

pattern is relatively stable. In the outer zone, the process of urbanization still continues, thus it 

shows a less degree of organization than the inner zone. Here the system is still evolving. 

Frankhauser and his group (1991) have analyzed the urbanized areas of a number of cities in 

Europe, North American, and Australia, and found that most of them have a bifractal form.  

 The measure of fractal dimension which shows the fractal structure of cities also introduces 

the characteristics of self-similarity of complex systems. It means that new areas in cities show 

patterns which often are indistinguishable from the previous patterns and from the whole of the 

city, moreover the structure of the pattern is independent from scale (Torrens, 2000; Wolfram, 

1994). These patterns are fractal structures and can be characterized through fractal dimension 

(Torrens, 2000).  

 Here, the measure of fractal dimension is adopted to analyze the characteristics of urban 

growth in the Tokyo metropolitan area from 1974 to 1994. Tokyo station was chosen as the 

origin point for calculating the fractal dimensions. Firstly, the area-radius relationships for the 
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urban area of the Tokyo metropolitan area at the series of time from 1974 to 1994 were 

calculated and shown in Figure 3.6. In this process, urbanized areas which are far more than 

50km from Tokyo station were omitted because cell counts for these areas are dominated by 

boundary effects. As the relationship remains stable under the radius of 7km, Figure 3.6 just 

shows that more than 7km.  

 From Figure 3.6 it can be found that in any time section the urbanized area displays a 

bifractal structure; in each case the area relationship is a little kinked, with a steep inner segment 

(1-15km) and a little flatter outer part (15-50km). The fractal dimensions of the urbanized area 

for these two parts in different time section were calculated respectively, shown in Figure 3.7. It 

clearly shows that the fractal dimensions of inner part are near biggest numerical value of 2.0 

and has changed hardly from 1974 to 1994. It indicates that the inner part consists of the area 

within which the urbanization process was essentially complete. The fractal dimensions of outer 

part were smaller than that of inner part and have grown up gradually from 1974 to 1994 but 

kept the characteristics of fractal structure, meaning that the outer part was the area in which 

stochastic effects remained important and the process was still full active, so that the urban 

structure has not stabilized.  

3.3.2 Characteristics of urban growth in terms of spatial 

metrics 

Spatial metrics come from the concept of landscape metrics which were developed in the 

late 1980s and incorporated measures from both information theory and fractal geometry 

(Mendelbrot, 1983; Shannon and Weaver, 1964) based on a categorical, patch-based 

representation of a landscape. Patches are defined as homogenous regions for a specific 

landscape property of interest, such as “agricultural land”, “lake” or “urban area”. Therefore, 

landscape metrics are used to quantify the spatial heterogeneity of individual patches, of all 
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Figure 3.6 Evolution of the area-radius plots of urbanized area in the Tokyo metropolitan area 

through the series of time from 1974 to 1994 
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Figure 3.7 Evolution of the inner (1-15km) and outer (15-50km) fractal dimension of the 

urbanized area in the Tokyo metropolitan area from 1974 to 1994 
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patches belonging to a common class, and of the landscape as a collection of patches. When 

applied to multi-scale or multi-temporal datasets, the metrics can be used to analyze and describe 

change in the degree of spatial heterogeneity (Dunn et al., 1991; Wu et al., 2000). Given to apply 

in urban domain, Herold et al. (2003) pointed out that the approaches and assumptions might be 

more generally described as “spatial metrics”.  

Interest in using spatial metric concepts for the analysis of urban environments is starting to 

grow. In 1997, Geoghegan et al. firstly explored spatial metrics in modeling land and housing 

values. Alberti and Waddell (2000) substantiated the importance of spatial metrics in urban 

modeling. They proposed specific spatial metrics to model the effects of the complex spatial 

pattern of urban land-use and cover on social and ecological processes. Parker et al. (2001) 

summarized the usefulness of spatial metrics with respect to a variety of urban models and argue 

for the contribution of spatial metrics in helping link economic processes and patterns of 

land-use. Herold et al. (2003) proposed the integration approach of remote sensing and spatial 

metrics in spatiotemporal analysis and modeling of urban growth. In 2005, Herold et al. 

systematically analyzed the role of spatial metrics in the analysis and modeling urban growth and 

argued that spatial metrics definitely deserve a place in the urban dynamics research agenda.  

Here four spatial metrics, CA, NP, PLAND, and LPI, which are defined as in Table 3.3, are 

adopted as measures to analyze the characteristics of spatial process of urban growth in the 

Tokyo metropolitan area from 1974 to 1994 in terms of the change of spatial heterogeneity. Class 

area (CA) is a measure of urbanized area. Change in CA across time can present the change in 

urbanized area. The number of patches (NP) metric quantifies the number of individual urban 

areas. The dynamics of NP coupled with CA can describe the degree of fragmentation of the 

urbanized area. The largest patch index (LPI) describes the percentage of total landscape area 

comprised by the largest patch. As such, it is a simple measure of dominance and presents the 

extent of the aggregation of urbanized area. Percentage of landscape (PLAND) quantifies the 

proportional abundance of urbanized area in the landscape. Chang of PLAND can express the 
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Table 3.3 Spatial metrics used in this study 

Metrics Description Units Range 

CA-Class Area 
CA equals the sum of the areas (m2) of all 
patches, divided by 10,000 (to convert to 
hectares). 

Hectares CA>0, no limit 

NP-Number of 
patches 

NP equals the number of patches in the 
landscape. 

None NP>=1, no limit 

LPI-Largest patch 
index 

LPI equals the area (m2) of the largest patch of 
the corresponding patch type divided by total 
area (m2), multiplied by 100 (to convert to a 
percentage). 

Percent 0<LIP<=100 

PLAND-Percentage 
of the 
Landscape 

PLAND equals the sum of the areas (m2) of 
all patches of the corresponding patch type, 
divided by total landscape area (m2), 
multiplied by 100 (to convert to a percentage). 

Percent 0<PLAND<=100 

 
Source: McGarigal et al., 2002 
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growth or decay of the urbanized area. 

 The results of spatial metrics calculation are shown in Figure 3.8, which presents diagrams 

of temporal growth significance of four different spatial metrics. The metrics shown were 

calculated using the software of FRAGSTATS for the year of 1974, 1979, 1984, 1989, and 1994 

respectively. The value of CA for this area gradually increased and approximately kept the same 

speed. It indicates the fact of urban growth of the Tokyo metropolitan area in this period. The 

change of the value of PLAND also shows the same characteristics. However, the value of NP 

kept gradual decline with time. This shows the characteristic of the compact growth or 

conglomeration of the existing urbanized area in the Tokyo metropolitan area. There are two 

reasons which can yield the results. One is that new urbanized areas always emerge along the 

fringe of existed urbanized area. Gradually some urbanized area patches grow conjunctively so 

that new bigger patch comes into being. This phenomenon indicates the effect of neighborhood 

in the process of urban growth. The other reason is that new urbanized areas would appear in 

new place firstly, but with their growth, they connect with existing urbanized area and yield new 

bigger patch of urbanized area. However, no matter what any reason produce the structurally 

compact growth of urbanized area. This trend is confirmed by the increase of the LPI metric. 
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Figure 3.8 Temporal urban growth significance of spatial metrics in the Tokyo metropolitan area 

from 1974 to 1994  

(Note: the PLAND and LPI metrics to the secondary y-axis) 
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Chapter Four 

Modeling spatial process          

of urban growth 

According to O’Sullivan and Unwin (2002), as spatial pattern in any time is generated from 

corresponding spatial process (O'Sullivan and Unwin, 2002), spatial model which aims at 

simulating the spatial process can be constructed through analyzing dynamic spatial patterns in 

time-series. Modeling spatial process of urban growth also takes the same procedure. This 

approach represents the link from spatial pattern to spatial process.  

Traditionally, research on modeling urban growth always deals with study area into binary 

categories of land-use: urbanized area and non-urbanized area (Clarke et al., 1997; Herold et al., 

2003; Silva and Clarke, 2002; Wu, 1998b; Wu, 1998a). It is assumed that urbanized area grows 

up as one homogenous object and the form of city is generated under exogenous conditions. 

However, they omit the fact that urban growth is the results of emergence of urban activities as 

well as their interactions and competitions. Based on this kind of cognition, in this research 

urbanized area are divided into more detailed land-use categories, and the emergence, interaction, 

and competition of these land-use categories yield the fact of urban growth. The model in this 

research is constructed based on this assumption. 
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4.1 Constrained cellular automata-based model 

4.1.1 Factors of spatial process of urban growth 

From a practical point of view, several land-use allocation factors have been identified for 

urban activities in the science of spatial decision-making (Carver, 1991; Eastman et al., 1993; 

Voogd, 1983) and applied in geosimulation of urban dynamics (Barredo et al., 2003). Spatial 

process of urban growth is the result of urban dynamics which are decided by these factors. Five 

groups of factors can be identified:  

 environmental characteristics;  

 local-scale neighborhood characteristics;  

 spatial characteristics of the cities (i.e. accessibility);  

 urban and regional planning policies;  

 factors related to individual preferences, level of economic development, 

socio-economic and political systems.  

The first group is related to environmental characteristics. It may be represented as 

constraints for urban growth. For example, slopes, land conditions, and natural barriers belong to 

the first group.  

It should be noted that the second factor is related with Tobler’s first law of geography: 

“Everything is related to everything else, but near things are more related than distant things” 

(Tobler, 1970). It can be defined as the present and past land-use patterns and their dynamics. 

Land-use patterns usually represent the strongest influence for the dynamics of land-use. 

Distance from new features to existing land-uses and the type of these land-uses drive the urban 

dynamics at local scale.  

It is logical to think that new residential areas usually grow near or adjacent to existent 

residential areas. However, they are also influenced by other land-uses. For example, in this case, 
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the commercial land-use could represent an attractive factor. As a result a sort of equilibrium is 

reached between all actual land-uses and their dynamics in a defined neighborhood.  

The third group of factors is related to the spatial characteristics of cities. Factors such as 

distance to the centre, accessibility, flows or transport networks, are included in this group. For 

example, new links in the road network might contribute enormously to urban dynamics as an 

attractor for urban land-uses.  

The fourth group is related to urban and regional planning policies. From a practical point of 

view, this group is represented by land-use zoning status. Through land-use zoning plans the city 

is regulated to be occupied by land-uses in space and time.  

The fifth group comprises factors related to individual preferences, level of economic 

development and socio-economic and political system. These are the most complicated to 

understand and model. This group of factors is also related to human decision-making processes, 

which in most cases are qualitative, evolve in time and can be intransitive and therefore difficult 

or almost impossible to predict. For example, a new residential area could be located in a place 

because it is more “beautiful” than other places. Usually human decision-making processes 

include some level of unpredictability. Couclelis (1988) defined human systems as “terribly 

complex”. From a practical point of view the related complexity of human systems could be 

modeled as some degree of stochastic in a probabilistic schema. Therefore, it can be considered 

as a stochastic factor in urban dynamics modeling. The problem arises in how it can be defined 

and calibrated.  

The sum of all the factors which participate in urban dynamics, plus the human decision 

component, generates a complex dynamic system whose behavior is influenced by some degree 

of stochastic. Where and when some features will change in a city is a spatio-temporal 

multi-factor process which necessarily includes some stochastic degree. Therefore, the process of 

urban dynamics can be defined as an iterative probabilistic system (White et al., 1999) in which 

the probability (p) that a place (i) in a city is occupied by a land-use (k) in a time (t), is a function 
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of the concerned factors measured for that land-use: suitability (S), accessibility (A), land-use 

zoning status (Z), neighborhood influence (N) and a stochastic perturbation (v):  
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t
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t −−−−= .    (4-1) 

Considering this approach, the probability that an area changes its land-use is a function of the 

five groups of factors working together in time, plus a stochastic degree. In this schema the 

neighborhood factor (N) makes the city works like a non-linear system. Their dynamism and 

interactive behavior can be understood as the basis of spatial process of urban growth.   

4.1.2 Cellular automata-based model for spatial process of 

urban growth in the Tokyo metropolitan area 

 Cities are complex systems, which are characterized by collective properties that define the 

behavior of the system as a whole. As a joint product of the science of complexity and the 

computational revolution (Couclelis, 1986), CA are excellent models which deal with these 

complex systems (Torrens and David, 2001). In CA-based model the state of each cell in an array 

depends on the previous state of the cells within a neighborhood, according to a set of transition 

rules (White et al., 1999). This is the fundamentals of the application of CA to urban 

goesimulation. This also is the key point connecting CA with urban modeling, as the 

neighborhood effect initiate a non-linear dynamics process in which the current land-use pattern 

and the local-level interactions combine to create the distribution of new urbanized areas and 

changes from one urban land-use type to another in urban dynamics. Land-use types interact at 

neighborhood local scale as non-linear feedbacks producing a dynamic system. Each change in 

urban land-use affects future land-uses at local scale, changing the local equilibrium every time 

when a land-use change takes place. All this makes the process very dynamic and interactive.  

 However, urban configuration comes from not only neighborhood interactions, but also 

other factors as discussed in section 4.1.1. A set of factors, like suitability, accessibility, and 
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land-use zoning, behaving in a linear deterministic way produce a subset of areas prone to be 

occupied by some land-use. In this process, the factors are not very dynamic and remain stable 

for some period until some external action modifies it. For example, the creation of a new 

railway station will modify the accessibility parameter. Moreover, Cities are most social and 

economic processes show some degree of stochastic. Because of the stochastic nature of the 

system some places that been highly ranked in neighborhood interactions or non-dynamic 

processes may be discarded or can be occupied by a less proper land-use due to human-related 

decisions.  

 Following the theoretical considerations above, a vector of transition potentials (one 

potential for each function) is calculated for each cell from the suitability, accessibility, zoning 

status, and neighborhood interaction, and the deterministic value is then given a stochastic 

perturbation using a modifies extreme value distribution, such that most values are changed very 

little but a few are changed significantly: 
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Where tPik is the CA transition potential of the cell i for land-use k at time t; t-1Nik the 

neighborhood space effect on the cell i for land-use k at time t-1; t-1Sik the intrinsic suitability of 

the cell i for land-use k at time t-1; t-1Zik the zoning status of the cell i for land-use k at time t-1; 

t-1Aik the accessibility of the cell i to transportation for land-use k at time t-1. t-1v is the scalable 

random perturbation term at time t; it is defined as:  

α)]ln([1 randv −+= .       (4-3) 

Where, (0 < rand < 1) is a uniform random variable, and α is a parameter that allows the size of 

the perturbation to be adjusted. The stochastic term v has a highly skewed distribution, so that 

most values are near unity, and much larger values occur only infrequently. Thus most of the 

potentials tpik are close to their unperturbed, deterministic values. 

 Once all transition potentials are calculated, each cell is converted to the state for which it 

has the highest potential. In this conversion procedure, only potentials for transformation to the 
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same function are compared. Potentials for transformation to different functions are not 

meaningful as the potentials for different functions are scaled arbitrarily with respect to each 

other. However, this process is subject to an important constraint. Unlike the case in 

conventional CA, the number of cells in each state at each iteration is not left to be determined 

incidentally by the application of the state transition rules based on equation (4-2). Because the 

growth of a city depends essentially on its position in a larger urban-economic system (large 

scale urban models) and the proportion of various land-use types can change only slowly and 

within certain limits. In this model the total number of cells in each state to be equal to totals 

supplied exogenously at each iteration. This is achieved by converting each cell to the state for 

which its potential is highest, starting with the highest potential – but only until the required 

number of cells for a given state is attained. Once that the point is reached, the potential of all 

other cells for that state is set to zero, so no further cells are converted to that state. This kind of 

models was called constrained CA model by White et al. (1997).  

4.1.3 Identification of grid size of CA 

As mentioned in section 2.2, CA is defined as a two-dimensional grid of identical automata 

cells in urban modeling. Now, one of the problems with which this research is being confronted 

is how to identify appropriate grid size of land-use map for modeling spatial process of urban 

growth in the Tokyo metropolitan area. Up to now, for example, various types of grid size of 

land-use map have been used in many literatures: 500m×500m (White and Engelen, 1993), 

300m×300m (Clarke et al., 1997), 250m×250m (White et al., 1997), 240m×240m (Yang and Lo, 

2003), 100m×100m (Barredo et al., 2003), and so on. It seems that no theoretical justification 

can be given to adopting any specific grid size. In fact, grid size is associated with spatial scale. 

Spatial scale encompasses both grain and extent (Turner et al., 1989). Grain refers to the 

resolution of the data, i.e., grid size in CA models. Extent refers to the overall size of the study 

area. As usually study area is fixed, spatial scale can be deemed as grid size, or spatial resolution. 
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Understanding of spatial process comes from the analysis of spatial pattern (O'Sullivan and 

Unwin, 2002). Generally it is recognized that in the field of landscape ecology, spatial pattern 

and spatial scale are inseparable in theory and in reality. Spatial pattern occurs on different 

spatial scales, and spatial scale affects spatial pattern to be observed (Qi and Wu, 1996; Turner et 

al., 1989). Accordingly, the results of urban land-use pattern analysis also show difference in 

different spatial scales, and it would affect understanding of spatial process of urban growth. 

Jantz and Goetz (2005) have demonstrated the issue in urban modeling. 

Some scholars have paid attentions to the relationship of spatial scale and spatial model of 

land-use changes. Turner (1987) has studied the difference of results of simulating landscape 

changes in Georgia by comparing three transition models. He argued that it would be useful to 

incorporate variable scales of land-use transitions into the model of land-use changes (Turner, 

1987). De Koning et al. (1998) have discussed the spatial scale effects on land-use model. They 

found different driving factors of land-use changes in Ecuador at different aggregation levels 

using multiple regression models (De Koning et al., 1998). Veldkamp et al. (2001) have 

elaborated on a multi-scale approach as used in CLUE (Conversion of Land-use and its Effects) 

framework and argued the need for scale sensitive approaches in spatially explicit land-use 

change modeling (Veldkamp et al., 2001). However, little systematic investigation has been done 

as to how changing spatial scale affects analysis of urban land-use pattern. Zhao and Murayama 

have paid attention to this issue (Zhao and Murayama, 2005; Zhao and Murayama, 2006a). 

Three principles were set in order to identify appropriate grid size for the model: 

1) the grid size should be relatively small compared with some literatures in order to keep 

the model with high-resolution. 

2) urban land-use pattern under the grid size selected should be widely representational. 

As the understanding of spatial process of urban growth comes from the analysis of 

urban land-use pattern changes, this principle ensures that land-use pattern does not greatly 

change in certain range near the selected grid size. 
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3) loss of the area of land-use category should be kept as small as possible in the process of 

grid size conversion. 

The original data set possesses very high-resolution with 10m. The area of land-use 

category would lose in the process of grid size conversion from 10m (Moody and 

Woodcock, 1994). This principle tries to keep high-precision for the model. 

Under the control of three principles above, an experimental area was chosen for identifying 

appropriate grid size for modeling spatial process of urban growth by analyzing the effect 

characteristics of grid size (or spatial resolution) effect on the urban land-use patterns.  

Experimental area and data set 

 One experimental area located in the Central Business District (CBD) of the Tokyo with area 

3×4km was selected for the empirical analysis as the date set of DDIMA10m (in 1994) provides 

the probability of changing spatial resolution of urban land-use map from high resolution (10m) 

to low resolution (200m, according to the first principle) in analyzing urban land-use pattern. As 

this research does not discuss how to classify land-use, the land-use classifications in original 

data set were aggregated into 10 categories for the discussion (Table 4.1) in order to reduce 

workload. It is assumed that this process does not affect the understanding of spatial scale effect 

on land-use pattern analysis. 

In order to allow a systematic analysis of spatial scale effect, the original grid cells (basic 

cell unit, BCU, here 10m×10m) were aggregated into larger grid cells in the following way. Each 

BCU was treated as one basic unit, and therefore the grid size at this scale was expressed as 1 by 

1. A 2×2 areal unit, then, corresponded to the grid size that contained four BCUs (two on each 

side). This was accomplished by aggregating four adjacent basic cell units into one larger grid 

cell in majority rule. Figures 4.1a and b indicate the schematic process of aggregation of four 

BCUs into one cell with 20m×20m in single-state structure (one cell only possesses one state). In 

Figure 4.1a, as the sate of all the BCUs is park and woods, the aggregated cell is assigned 

land-use type of park and woods. In Figure 4.1b, the proportion of park and woods, road,  
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Table 4.1 Categories in original data set and in grid size study 

Categories in original data set Categories in grid size study 

A. Forest & wasteland 1. Park and woods 

B. Paddy field 2. Agricultural land 

C. Dry field & other farmlands 2. Agricultural land 

D. Land under construction 3. Vacant land 

E. Vacant land 3. Vacant land 

F. Industrial land 4. Industrial land 

G. Low-storey residential land 5. Low-storey residential land 

H. Densely developed low-storey residential land 5. Low-storey residential land 

I. Medium and high-storey residential land 6. High-storey residential land 

J. Commercial land 7. Commercial land 

K. Road 8. Road 

L. Park 1. Park and woods 

M. Public facility 9. Public land 

N. Water 10. Water 

O. The others 9. Public land 
 

 

 



 58

10m×10m 20m×20m

(c)

Park and woods 

Road 

Commercial land 

Mixed land-use 

10m×10m 20m×20m

10m×10m 20m×20m

(b)

(a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic process of the aggregation of four BCUs into one cell. (a) Four BCUs with 

same category of land-use in single-state structure; (b) four BCUs with different 

categories of land-use in single-state structure; (c) four BCUs with different 

categories of land-use in multi-state structure  
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commercial land to the area of four BCUs is 50%, 25% and 25% respectively. As the proportion 

of park and woods is more than that of others, the aggregated cell is assigned land-use category 

of park and woods. This procedure was repeated until the entire region of the data sets was 

covered. In total, 20 different grid sizes (spatial resolution) were created, ranging from 1×1 

through 20×20 BCUs (i.e., 1, 22, 32 …, 202). That is, a series of urban land-use map with spatial 

resolution from 10m×10m through 200m×200m come into being for this study. Figure 4.2 shows 

the spatial patterns of urban land-use in some scales. In order to investigate the area change of 

land-use category in the process, this procedure also was carried out in multi-state structure (one 

cell possesses multiple states, with proportion of every state) (Zhao and Murayama, 2006a), 

shown in Figure 4.1c.  

In the aggregation process, sometimes the original data set had to be modified (edge rows or 

columns were omitted) to obtain integer numbers of rows and columns. While this kind of 

modification was necessary only for technical convenience, it was assumed that this modification 

would not greatly affect the results of the analysis because of the relatively large size of the data 

at high spatial-resolution level. 

Analysis 

 Here, spatial autocorrelation index was selected to represent the general pattern of urban 

land-use. Spatial autocorrelation is a general geographical phenomenon in nature, which 

indicates spatial association and spatial dependence of geographic phenomenon (Anselin, 1988; 

O'Sullivan and Unwin, 2002). Although spatial autocorrelation could be seen as a 

methodological disadvantage, but on the other hand it is exactly what gives us information on 

spatial pattern, structure and processes and fundamental to much geographical work (Gould, 

1970). 

Measures of spatial autocorrelation work by examining how objects at one location are 

similar to objects located nearby. If features situated close together have similar attribute 

information, then the pattern in the data can be described as exhibiting positive autocorrelation.  
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Figure 4.2 Spatial patterns of urban land-use at some scales for experimental area in 1994 
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When features close together are more dissimilar in attribute value than features further away, 

pattern in the data is negatively auto correlated. Zero autocorrelation exists when attributes or 

their values are independent of location (Goodchild, 1986).  

Moran’s I and Geary’s c are two common indices for detection of spatial autocorrelation 

(Cliff and Ord, 1981; Goodchild, 1986; Moran, 1950). Qi and Wu (1996) have used both the 

indices to analyze the effect of changing spatial resolution on the results of topography and 

biomass pattern in 1972 of Peninsular Malaysia. They found no appreciable difference among 

them with regularly grid data sets. Therefore, Moran’s I was selected as analysis index in this 

research. Moran’s I is defined as follows: 
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Where, Xi and Xj stand for feature value of two cells nearby; X  average value of feature of all 

the study area; n total number of cells; W weight (connectivity) matrix. When cell i and cell j are 

neighboring, Wij=1, otherwise Wij=0. By convention, Wii=0. The value of Moran’s I generally 

varies between 1 and -1, although values lower than -1 or higher than +1 may occasionally by 

obtained. Positive autocorrelation in the data translates into positive values of I; negative 

autocorrelation produces negative values. No autocorrelation results in a value close to zero 

(Goodchild, 1986). 

Definition above shows that the value of Moran’s I is mostly determined by two factors: the 

value of cell and weight matrix. Here, the value of cell adopts the proportion that stands for the 

extent to which the cell belongs to one or more land-use categories. The weight matrix is 

constructed in queen case (i.e., a grid cell is adjacent to the neighboring cells in eight directions: 

left, upper-left, upper, upper-right, right, lower-right, lower, lower-left), similar to Moore 

neighborhood in cellular-based model of urban dynamics (Figure 2.3). 

Figure 4.3 indicates land-use structure of study area. And the value of Moran’s I (VMI) of  
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Figure 4.3 Land-use structure of the experimental area in 1994 

(Note: The label stands for the category, area in ha. and  

the proportion to the experimental area respectively) 
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the land-use categories at all the levels of scale are calculated using Geoda software. Figure 4.4 

illustrates the variogram of the VMI of all the land-use categories at the series of spatial 

resolution using single-state structure.  

Figure 4.4 indicates that all the data sets show a positive spatial autocorrelation across a 

range of grid size except land-use type of vacant land at the level of size more than 100m×100m. 

That is, almost all the types of urban land-use exhibit characteristics of spatial association across 

the range of scale. It also indicates that the spatial autocorrelation of all the land-use types are 

scale-dependent as the VMI of all the types of urban land-use decrease with increasing grid size. 

In the extent from 10m×10m to 50m×50m, the VMI of all the categories of urban land-use 

decreases rapidly. This indicates that the spatial pattern of all the categories of urban land-use 

shows strong scale-dependence in this extent. In the scale range of more than 50m×50m to 

100m×100m, while any one of the land-use categories is different from the other in the variation 

of VMI, all the variogram of VMI decreases slowly. That is, scale-dependence in this extent is 

not as obvious as that in extent from 10m×10m to 50m×50m. In the range of more than 

100m×100m, land-use pattern of all categories, except vacant land and industrial land of which 

are very few in this experimental area, keep relatively stable.  

However, the effect of grid size shows different characteristics on different urban land-use 

category. In order to analyze the differences of effect characteristics, the variogram of VMI of all 

the urban land-use categories was divided into three groups according to the VMI at original grid 

size (Figure 4.5).  

In Figure 4.5a, the VMI of four types of urban land-use are highest, more than 0.75, at level 

of original grid cell. The VMI of industrial land and water decrease rapidly across the range of 

grid size but that of public land decrease not so rapidly. The VMI of park and woods decreases 

rapidly till spatial resolution of 80m, then keep approximately stable. The VMI of three types of 

urban land-use in Figure 4.5b keep between 0.6 and 0.7 at level of original grid size. The VMI of 

low-storey residential land till 20m×20m, commercial land till 30m×30m and high-storey  
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Figure 4.4 Variogram of the VMI of land-use category in the series of grid size in 1994 
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Figure 4.5 Three groups of the variogram of the VMI. (a) park and woods, water, public land, 

and industrial land; (b) high-storey residential land, low-storey residential land, and 

commercial land; (c) vacant land and road 
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residential land till 50m×50m of grid size decrease rapidly, then slowly after that. The VMI of 

two types of urban land-use in Figure 4.5c are low and decrease rapidly from 10m×10m to 

50m×50m of grid size then keep relatively stable. However, the VMI of vacant land disappears 

from 100m×100m of grid size.  

From Figures 4.3 and 4.5 it can be found that effect characteristics of changing grid size on 

urban land-use pattern is determined by the proportion of urban land-use type to the whole study 

area and spatial association in general. Spatial autocorrelation of urban land-use with low 

proportion and dispersed association decreases rapidly with increasing grid size, even disappear. 

But for high clustered (e.g., park and woods), the spatial autocorrelation decreases slowly, even 

does not decrease any more (more than 80m×80 grid size). Spatial autocorrelation of urban 

land-use with high proportion decrease rapidly in a high-resolution range (10m×10m to 50m×50), 

then show no much effect in a low-resolution range.  

Analysis above shows that in the grid size range from 10m×10m to 200m×200m, urban 

land-use pattern in grid size of 100×100m to 150m×150m can satisfy the second principle for 

identifying the appropriate grid size. 

Change of the area of urban land-use categories in the procedure of aggregating cells was 

investigated towards the third principle. Figure 4.6 illustrates the results of the investigation 

under the help of multi-state structure. It is obvious that the area of all urban land-use categories 

vary with changing grid size in single-state structure. The loss of the area of land-use category in 

high-resolution grid size is less than that in low-resolution level. It means that area precision of 

land-use category in the grid size with 100m×100m is higher than that more than 100m×100m. 

Therefore, 100m×100m was selected as basic grid size for this research. The data set with 

100m×100m was produced by aggregating the original 10m×10m cells in majority rule. 

4.1.4 Cell states as urban land-use categories 

The second problem which should be dealt with in this research is how to identify the state  
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Figure 4.6 Change in histogram of the area of land-use type across a range of grid size 

(Note: For every land-use type, the pillars from left to right stand for the change  

of the area of land-use in 10×10m, 20×20m, …, 200×200m respectively) 
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of CA, i.e. land-use categories. Urban land-use pattern occurs not just at certain scale, but also at 

certain land-use classification system. Characteristics of spatial scale effect on urban land-use 

pattern analysis may differ from land-use classification systems. The author tries to theoretically 

explore the problem through connecting land-use classification systems with spatial scale and 

land-use pattern analysis. 

Although some scholars have proposed some land-use classification standardizations 

(Andersen et al., 1976; Dickinson and Shaw, 1977), most literatures concerning spatial models of 

urban land-use change just choose their own urban land-use classification system in terms of 

their own purpose with no theoretical justification (Barredo et al., 2003; White and Engelen, 

1993; White et al., 1997). Klosterman (2005) has pointed out that the number of land-use 

categories which can be projected and the scale at which they can be projected vary substantially 

for the different types of models (Klosterman, 2005). Little systematic investigation has been 

done as to how the relationship is between urban land-use classification system and spatial 

pattern of urban land-use. Actually, identification of urban land-use classification systems for 

modeling spatial process of urban growth is also closely linked to spatial scale in the model 

(Andersen et al., 1976; Treitz and Rogan, 2004). Effect characteristics of different classification 

systems on the result of urban land-use pattern analysis is investigated at a range of scale using 

same experimental study area and data set in section 4.1.3 as well as the same methodology for 

this issue. 

Three principles were set in order to identify appropriate land-use classification system for 

the model: 

1) urban land-use pattern under the appropriate classification system should be relatively 

stable in certain range near the selected grid size of 100m×100m. 

This principle tries to keep the representation feature of urban land-use pattern in the 

grid size of 100m×100m. 

2) urban land-use categories should be able to represent the essential individual activities in 
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urbanized area, and 

3) loss of the area of land-use category should be kept as small as possible in the process of 

grid size conversion. 

Land-use classification systems 

Classifying land-use is one of manners to understand environment so as to provide 

important information to nation level or city level plans for overcoming the problems of 

haphazard, uncontrolled development, deteriorating environmental quality, loss of prime 

agricultural lands, destruction of important wetlands, and loss of fish and wildlife habitat 

(Andersen et al., 1976). Although land-use relates to physical form, land-use classifications 

mostly come from social purposes. Bibby and Shepherd (2000) have discussed the complexity of 

social purposes in terms of possibility of specifying purposes at many levels of generality, 

interaction between form and function as well as multi-networks of purposes (Bibby and 

Shepherd, 2000). Classifying land-use, therefore, can not be deemed as a straightforward process. 

As this research does not identify how to classify urban land-use, two types of urban land-use 

classification system, systems A and B, were designed based on the land-use classification 

system in the data set of DDIMA10m (Table 4.2). It is obvious that this design would not affect 

the understanding of the characteristics of classification systems effect on urban land-use pattern 

analysis. 

There are nine categories of land-use in system A, which is the same as in grid size study in 

section 4.1.3, and five in system B. In system B, the categories of vacant land, Industrial land 

and commercial land are the same as that in system A; two categories of low-storey residential 

land and high-storey residential land in system A were grouped into category of residential land 

in system B, and four categories of public land, park and woods, road and water into category of 

public land in system B. Through this kind of process, the author tried to investigate the effect 

characteristics of land-use classification systems on the land-use patter analysis. 
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Table 4.2 Two types of urban land-use classification system 

Categories in system A Categories in system B 

1. Vacant land 1. Vacant land 

2. Industrial land 2. Industrial land 

3. Commercial land 3. Commercial land 

4. Low-storey residential land 

5. High-storey residential land 
4. Residential land 

6. Public land 

7. Park and woods 

8. Road 

9. Water 

5. Public land 
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 Analysis 

 Figure 4.7 indicates land-use structure of the experimental study area in system B. The VMI 

of the land-use categories for system B at the series of grid size is shown in Figure 4.8. As the 

system is the same as in grid size study, corresponding results of system A are shown in section 

4.1.3 (Figure 4.3 and 4.4). 

 Figure 4.8 illustrates that the spatial autocorrelations of urban land-use category in system B 

also show scale-dependent as the VMI decreases with increasing grid size. In order to explore the 

characteristics of land-use classification system effect on land-use pattern, the VMI of land-use 

category was compared between these two classification systems (Figure 4.9). 

Figures 4.9a, b and c illustrate that scale-dependence characteristics of urban land-use 

pattern of vacant, industrial and commercial land does not change from system A to system B. 

However, Variogram of the VMI of each land-use category differs a little between these two 

classification systems. This phenomenon comes from the area change of land-use category in the 

procedure of cell aggregation.  

Figure 4.9d shows the difference of grid size effect on land-use pattern of residential land in 

both classification systems. Residential land in system B was grouped from low-storey and 

high-storey residential land in system A (Table 4.2). While the variogram of the VMI of 

residential land is different from both the VMIs of low-storey and high-storey residential land, it 

is more alike that of low-storey residential land. Figure 4.7 illustrates that the proportion of 

low-storey residential land (23.7%) is more than that of high-storey (6.75%). This difference 

may indicates that the characteristics of grid size effect of one type M (e.g. residential land) of 

urban land-use in one classification system (e.g. system B) are mainly influenced by the type of 

urban land-use with higher proportion to the study area (here low-storey residential land) in all 

the types of land-use, which compose type M of land-use, in another classification system (e.g. 

system A). Moreover, Figure 4.9d also indicates that this kind of aggregation of land-use types 

enhances the spatial autocorrelation of the corresponding land-use pattern so as to reduce the 
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Figure 4.7 Land-use structure of the experimental study area in system B in 1994 

        (Note: The label stands for the category, area in ha. and proportion to the  

experimental area respectively) 
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Figure 4.8 Variogram of the VMI of land-use category in system B across the series of grid size 

in 1994 
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Figure 4.9 Comparison of the VMI of urban land-use category in two classification systems 

across a range of grid size. (a) Vacant land; (b) Industrial land; (c) Commercial land; 

(d) Residential land; (e) Public land 
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characteristic of random in land-use pattern.  

Land-use of public land in system B was grouped from land-use of public land, water, road, 

park and woods in system A. Figures 4.9e illustrates the difference of urban land-use pattern of 

public land between these two classification systems. The VMI of land-use of public land in 

system B at BSU is located in the middle of that of system A which composes public of system B. 

Figure 4.3 indicates that the proportion of public land to the study area (16.63%) in system A 

nearly equal that of road (17.05%). All the VMI of road across the range of grid size are lower 

very much than that of others. So add of road to public land may influence the VMI of land-use 

of public land in system B at BSU. But grid size effect on public land in system B is not as 

notable as that of others. Since the proportion of land-use of water is small (0.86%) compared 

with that of other categories, it may does not greatly influence the public land. However, 

land-use of park and woods, the proportion of which is bigger (9.1%), may give more influence 

than water to the public land as their variograms parallel to each others.  

Compared with Figure 4.6, Figure 4.10 illustrates that the amount of area change of land-use 

in different classification systems across the range of scale is different, and the amount in system 

B is less than that in system A across the range of grid size. It means that reducing number of 

urban land-use categories may diminish the loss of area of land-use categories across the range 

of grid size and the effect of grid size on urban land-use pattern analysis.  

It is clear from above discussions that number of land-use categories should be as small as 

possible in order to satisfy the first and third principle set for identifying land-use classification 

system as pattern of grouped land-use category is relatively stable and the loss of area is small. 

However, in order to satisfy the second principle, identified land-use classification system should 

includes elementary urban activities. Based on these considerations, land-use classification 

system used in this research was designed as shown in Table 4.3. This land-use classification 

system was divided into two levels. Level two was used for discussing the interactions of urban 

activities in spatial process of urban growth. Level one was used for analyzing general 
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Figure 4.10 Change histogram of the area of land-use type across a range of grid size in 

system B 

(Note: For every land-use type, the pillars from left to right stand for the change of the area 

of land-use in 10×10m, 20×20m, …, 200×200m respectively) 
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Table 4.3 Land-use classification system in this research 

Land-use classification system in this 
research Land-use classification system 

in original data set 
Level two Level one 

Characteristics

Land under construction 

Vacant land 
Vacant land 

Industrial land Industrial land 

Low-storey residential land 

Densely developed low-storey 
residential land 
Medium and high-storey 
residential land 

Residential land 

Commercial land Commercial land 

Active 

Road Road 

Public facility 

Park 
Public land 

The others Special land 

Urbanized 
area 

Active passively

Forest & wasteland Forest & wasteland 

Paddy field 

Dry field & other farmlands 
Cropland 

Non-urbanized 
area Passive 

Water Water Water Fixed 
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characteristics of the spatial process when urbanized area is dealt as one category.  

In level two, vacant land and land under construction was grouped into vacant land as both 

of them possess the potential of being transformed to other kind of built-up area in the future. 

Industrial land, commercial land, road, were retained as they stand for elementary activities of 

urbanized area. Land-use category of the others also was kept because of its special 

characteristics in urbanized area. Low-storey residential land, densely developed low-storey 

residential land, Medium and high-storey residential land were grouped into one category of 

residential land as they have the same characteristics of providing habitation for people. Public 

facility and park aim to provide people open space for leisure or other public activities. Therefore, 

both of them were aggregated into one category of public land. In non-urbanized area, forest & 

wasteland was kept. Dry field & other farmlands and paddy field were grouped into one category 

of cropland.  

As for characteristics of land-use categories, water represents fixed features in the model, 

that is, this feature are assumed not to change and which therefore do not participate in the 

dynamics in order to protect the life environment. Forest & wasteland and cropland are passive 

features that participate in the land-use dynamics, but the dynamics are not driven by an 

exogenous demand for land; they appear or disappear in response to land being taken or 

abandoned by the active functions. The active functions are the four land-use categories which 

are forced by demands for land generated exogenously to the cellular automata in response to the 

growth of the urban area: vacant, industrial, residential, and commercial land. Road, public land, 

and special land are active passively features which are dynamics in the model (Table 4.3). 

4.2 Calibration 

 The process of experimentation connected with the design of the model is usually called 

calibration. The chief purpose of calibrating the model is to estimate the values of parameters 
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which control the model’s locational simulation and the repercussions of activity through time. 

In other words, purpose of calibration is to establish the relationship between land-use change 

and the factors that affect probability of land conversion. The regression can be seen as a process 

to extract the coefficient of the empirical relationships from observations, which is critical step 

towards the development of more procedural and realistic urban CA simulation (Wu, 2002). 

Calibration of CA transition rules is complex due to the many interacting coefficients that do not 

necessarily yield unique solutions: different processes (rule sets) may lead to identical patterns 

(Verburg et al., 2004). Calibration, therefore, does not always lead to new understandings of the 

relative importance of the different coefficients and is inappropriate for testing hypothesis 

concerning the underlying factors of urban development. The same argument holds for other 

methods that calibrate the transition rule set without explicating the relations used. Li and Yeh 

(2001, 2002) propose a method that overcomes the definition problem of the transition rules of a 

CA model by training artificial neural networks (Li and Yeh, 2001; Li and Yeh, 2002). However, 

neural networks do not give insight in the relations actually used in modeling, leaving the user 

uninformed about the possible lack of causality in the relations that are used in the model. Also 

the method of Yang and Billings (2000) that solves this inverse problem of cellular automata 

based on genetic algorithms has a number of drawbacks (Yang and Billings, 2000b; Yang and 

Billings, 2000a). This method is, at present, only operational for simple, binary patterns. Spatial 

process of urban growth at multiple land-use types are much more difficult to unravel. The main 

drawback of all these calibration techniques forms the huge set of parameters to be calibrated 

and consequently, the large amount of computing time. A good initial set of transition rules 

would be of great help to get these procedures on their way. Here, new methods, especially for 

neighborhood effect calibration, are proposed to calibrate the model.  

 Data set of DDIMA10m in 1984 and 1989 was used to calibrate the model. Then the 

land-use pattern of 1994 was simulated under the calibration for assessment of the model as well 

as analysis the spatial process of urban growth of the Tokyo metropolitan area. 
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4.2.1 Neighborhood effect 

4.2.1.1 A new model of neighborhood interactions 

As discussed above, in CA–based model the state of each cell in an array depends on the 

previous state of the cells within a neighborhood according to a set of transition rules. Although 

the approaches of CA were improved greatly in the application on the geosimulation of urban 

growth, the neighborhood effect still is the key point in this kind of models. Especially in the 

context of spatial process of urban growth, neighborhood interactions are often addressed based 

on the notion that urban development can be conceived as a self-organizing system in which 

natural constraints and institutional controls (land-use policies) temper the way in which local 

decision-making processes produce macroscopic urban form. Different processes can explain the 

importance of neighborhood interactions. At large scale, simple mechanisms for economic 

interaction between locations were provided by the central place theory (Christaller, 1933) that 

describes the uniform pattern of towns and cities in space as a function of the distance that 

consumers in the surrounding region travel to the nearest facilities. Spatial interaction between 

the location of facilities, residential areas and industries has been given more attention in the 

work of Krugman (Fujita et al., 1999; Krugman, 1999). The spatial interactions are explained by 

a number of factors that either cause concentration of urban functions (centripetal forces: 

economies of scale, localized knowledge spill-overs, thick labor markets) and others that lead to 

a spatial spread of urban functions (centrifugal forces: congestion, land rents, factor immobility 

etc.).  

In keeping with the spirit of simplicity, neighborhood interactions in the applications of CA 

on urban growth simulation most often adopt either the Von Neumann neighborhood or the 

Moore neighborhood as shown in Figure 2.3 (Batty, 1998; Wu, 1998a; Yeh and Xia, 2001). For 

most physical systems, these are clearly the most appropriate definitions, since such systems 

typically have only local causation (e.g. groundwater must first flow through adjacent cells 
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before it can reach more distant ones). In the case of human systems like cities, the idea of 

locality may be much larger, since people and institutions are aware of their surroundings in a 

wider space (White and Engelen, 2000). Thus it is desirable to define a neighborhood large 

enough to capture the operational range of the local processes being modeled by CA. White and 

Engelen (1993) firstly proposed this kind of configuration of neighborhood for exploring the 

relationship of CA-based model with urban form evolution (White and Engelen, 1993). They 

divided the neighborhood area into 19 zones according to the distance to the centre, and 

empirically gave the effect weights of different land-use types for different distance zones. In 

1997, White et al. calibrated the neighborhood effect by means of a trial and error approach for 

geosimulation of Cincinnati city (White et al., 1997). In 2004, this research group proposed 

automatic calibration procedure for this kind of neighborhood effect (Straatman et al., 2004). 

However, this approach is also a method of trial and error. Here, this kind of neighborhood 

definition by White and Engelen was adopted, which can stands for the local interactions of 

urban activities in human social systems, and a new theoretical model for capturing the 

neighborhood interactions was proposed.  

 Tobler’s first law of geography, “Everything is related to everything else, but near things are 

more related than distant things”, is the fundamental theory in this model. The first law of 

geography was firstly proposed by Tobler in August 1969, at the International Geographical 

Union Commission on Quantitative Methods Conference held in Ann Arbor, Michigan. Tobler 

presented a paper entitled “A computer movie simulating urban growth in the Detroit Region”. In 

next year, this paper was published in Geographical Analysis (Tobler, 1970).  

 As Tobler named the sentence “the first law of geography”, this law brought strong 

controversy in geography domain. In 2003, a panel on this law was organized in AAG meeting in 

New Orleans. Five famous geographers in the world presented their comments in this panel and 

these comments were published in a forum of Annals of the Association of American 

Geographers in 2004. Some professors agreed with Tobler, others not. However, all of them 
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accepted the actual geography phenomena illustrated by the first law of geography. The 

divarication existed on the word “law”. Goodchild discussed the validity and usefulness of this 

first law of geography in GIScience and geography (Goodchild, 2004). Here, the controversy of 

whether phenomena can be expressed as “law” was discarded, and the local knowledge 

expressed in Tobler’s first law of geography was accepted. It is assumed that the effect of the cell 

states in the neighborhood area of developable cell accord with the rule of distance decay 

described by the first law of geography.  

 The expression of Tobler’s first law of geography is very qualitative. A distance decay 

function is needed for representing the law. Here, the idea of Reilly’s law of retail gravitation 

(Reilly, 1931) was adopted. In 1931, using Newton’s gravity principles, Reilly proposed two 

simple rules that would help to describe the flow of retail trade between towns and cities. The 

first rule was that the larger the city the more retail trade it would draw from towns in the 

surrounding region. From his empirical work he discovered that retail trade increased at about 

the same rate as the population of another city would draw about twice as much retail trade from 

the surrounding region. The second rule was that a city draws more trade from nearby towns than 

it does from more distant ones. Again from his empirical word he found that retail trade 

decreased approximately in inverse proportion to the square of the distance from the city. 

Combing these two rules, Reilly’s law stated that ‘A city will attract retail trade from a town in 

its surrounding territory, in direct proportion to the population size of the city and in inverse 

proportion to the square of the distance from the city’. In algebraic terms the attraction of the 

shopping centre of city i, Ri, with population Pi, to individuals living in a town k, distance dki 

from city i, will be 

2
ki

i
i d

PR = .        (4-5) 

This is a typical power function which can be used to express the distance decay. Here, the 

function was adopted and modified for expressing Tobler’s first law of geography in this 
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research.  

 Figure 4.11 shows one of the extended neighborhood configurations of one developable cell 

i in this research, which is defined as all cells within a radius of eight cells, an area containing 

196 cells. It is assumed that in cellular environment all the cells in the neighborhood contribute 

to the conversion of developable cell i. The contribution of one cell is associated with the state of 

it and the distance to the developable cell i based on Tobler’s first law of geography. It can be 

express as follows: 

2
ji

j
khkh d

A
Gf =   ( j ≠ i).     (4-6) 

Where,  

fkh: constribution of one cell j with land-use k in the neighborhood to the conversion of the 

developable cell i to land-use h for next stage,  

  Aj: area of the cell j (here in square meters), 

  dji: the Euclidean distance between the cell j in the neighborhood area and the developable cell 

i, and 

Gkh: constant of the effect of land-use k on the transition to land-use h. + stands for positive, – 

repulsive.  

Figure 4.12 indicates the scheme of the impact gradient using this function. It should be 

noted that this is a modificatory Reilly’s gravity function and in this function no unit problem 

exists.  

Then the aggregated effect of the cells in the neighborhood can be expressed as: 

∑
=

=
m

j
kj

ji

j
khkh I

d
A

GF
1

2   ( j ≠ i).    (4-7) 

Where,  

m: number of the cells in the neighborhood, and  

 Ikj: index of cells. Ikj=1, if the state of cell j is equal to k; Ikj=0, otherwise. 
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Figure 4.11 An extended neighborhood configuration 

(Note: The different color of the cells stand for  

different land-use types) 
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Modificatory Reilly’s Model 

Impact index: great 

Distance from developable cell: far 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Scheme of the impact gradient 
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 For one cell one land-use type, there are just two results of transition: change or no change. 

Therefore, logical regression approach was selected to calculate the probabilities of the transition 

of cell i under neighborhood effect. The general form of logistic regression is described as 

follows: 

mmxbxbxba
P

Py ++++=
−

= L2211)
1

ln(    (4-8) 

y

y

e
eP
+

=
1 .            (4-9) 

Where x1, x2, x3, …, xm are explanatory variables, y a linear combination function of the 

explanatory variables representing a linear relationship. The parameter b1, b2, …, bm are the 

regression coefficients to be estimated. If z is denoted as a binary response variable (0 or 1), 

value 1 (z = 1) means the occurrence of new unit such as transition from non-urbanized area to 

urbanized area, and value 0 (z = 0) indicates no change. The P means the probability of 

occurrence of a new unit, i.e. z = 1. Function y represents the log (to base e) of the odds or 

likelihood ratio that the dependent variable z is 1. In logistic regression, the probability value can 

be a non-linear function of the explanatory variables. This is a strictly increasing function, 

probability P will increase with value y. Regression coefficients b1 – bm imply the contribution of 

each explanatory variable on probability value P. A positive sign means that the explanatory 

variable will help to increase the probability of change and a negative sign means the opposite 

effect. The statistical technique is a multivariate estimation method in examining the relative 

strength and significance of the factors (explanatory variables). 

 Based on the consideration of logistic regression approach, the neighborhood effect 

contribution to the probability of conversion to land-use h of a cell (Pi) is described as a function 

of a set of aggregated effect of different land-use types: 
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m mi

m

k
khikhoi

k
ikhikhoi

ih

ih I
d
AGF

P
PLog ∑∑∑ +=+=
− 2)

1
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As Gkh is a constant, let: 

khikhikhii Gββββ == '
0

'
0 ,  

Then: 
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− 2

''
0)

1
( ββ .      (4-11) 

Where, β'oi and β'ikh are the coefficients to be calibrated with maximum likelihood estimation. 

4.2.1.2 Calibration of neighborhood effect 

 As discussed in section 4.1.3, urban land-use pattern take the characteristics of spatial 

autocorrelation. Therefore, as one of statistical analysis techniques, logistic regression has to 

consider the problem of spatial statistics like spatial dependence and spatial sampling in this 

calibration procedure. Ignoring these issues will lead to unreliable parameter estimation or 

inefficient estimate and false conclusions regarding hypothesis tests (Irwin and Geoghegan, 

2001).  

 Traditional logistic regression does not take spatial dependence into account (Wu, 2000; Wu 

and Yeh, 1997). There are few selective alternatives to consider spatial dependence. One is to 

build a more complex model incorporating an autogressive structure (Gumpertz et al., 2000). 

Another is to design a spatial sampling scheme to expand the distance interval between sampled 

sites. The latter results in a much smaller size of sample and will lose certain information. 

However, the maximum likelihood method, upon which logistic regression is based, relies on a 

large-sample of asymptotic normality. It means that the result may not be reliable when the 

sample size is small. Consequently, a conflict occurs in applying logistic regression: the removal 

of spatial dependence and large size of sample. A reasonable design of spatial sampling scheme 

is becoming a crucial point of spatial statistics. Frequently adopted schemes in logistic regression 

modeling are either stratified random sampling (Dhakal et al., 2000; Gobin et al., 2001) or 

systematic sampling (Sikder, 2000). Spatial sampling aims to reduce the size of samples and 
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remove spatial autocorrelation. Systematic sampling is effective to better reduce spatial 

dependence but may lose some important information like relatively isolated sites when land-use 

is not spatially homogeneous. Conversely, random sampling is efficient in representing land-use 

pattern but low in efficiency in reducing spatial dependence especially local spatial dependence. 

Following the idea, the integration of both systematic and random sampling is better able to 

balance sample size and spatial dependence (Cheng and Masser, 2003).  

 Firstly, land-use changes were detected from 1984 to 1989. In order to eliminate the effect of 

boundary, the changes in the area with distance less than 600m to the boundary of study area 

were deleted. Then a systematic sampling was implemented and approximately half cells of the 

changes for every one of four active land-use types: vacant, industrial, residential, and 

commercial land, were remained. After the systematic sampling, in order to gain unbiased 

parameter estimation, the author continued to systematically select one of four cells from 

developable cell in 1984, and then randomly select appropriate sample numbers to create nearly 

1:1 ratio for changed cells and not changed cells. Its total size was 27, 070 cells. Systematic and 

random sampling was implemented under the environment of ArcGIS 9.0 coupled with VC++ 

programming.  

 The calibration was implemented according to the model proposed in section 4.2.1.1. The 

results of the coefficients and test of the calibration are shown in Table 4.4. Table 4.4 indicates 

that all the factors contribute to the transition of land-use to other three active land-use types 

except industrial land. Land-use type of residential land, road and public land do not statistically 

contribute to industrial land. All the values of PCP (Percentage Correctly Predicted) of four 

active land-use types are more than 80%, and all of the values of ROC (Relative Operating 

Characteristic) more than 0.9, showing goodness of fit of this neighborhood effect model. The 

ROC is based on a curve relating the true-positive proportion and the false-positive proportion 

for the complete range of cut-off values in classifying the probability (Pontius and Schneider, 

2001; Verburg et al., 2004). The ROC statistic measures the area beneath the curve and varies 
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Table 4.4 Result of the calibration of neighborhood effect 

Active land-use types  
 
 
factors and test Vacant land Industrial land Residential land Commercial land

Total size (cells) 
of sampling 11034 1732 11596 2708

β´Vacant land, h 1.147 *0.091 0.190 0.158

β´Industrial land, h 0.334 1.446 0.262 0.457

β´Residential land, h 0.103 ** 0.562 0.209

β´Commercial land, h 0.348 0.727 0.181 1.821

β´Road, h 0.199 ** 0.421 0.561

β´Public land, h 0.198 ** 0.199 0.224

Constant β´0 -2.428 -1.988 -2.830 -2.763

Test  

PCP (%) 84.3 87.6 83.6 86.3

ROC 0.924 0.937 0.905 0.937

 
PCP: Percentage Correctly Predicted.  

ROC: Relative Operating Characteristic.  

*: significant at p<0.05;  

**: non-statistically significant;  

others significant at p<0.01.  
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between 0.5 (completely random) and 1 (perfect discrimination). The high values of ROC of four 

active land-use types indicates that it is possible to predict new area locations reasonably well 

based on the neighborhood characteristics. 

 It should be noted that in Table 4.4 the regressed coefficient of land-use type to itself is 

higher than that of other factors. This illustrates the characteristics of spatial autocorrelation in 

urban land-use pattern. 

4.2.2 Accessibility 

 Empirically, White et al. (1997) have shown that the transportation network is one of the 

determinant factors of the “visual urban form”. Here, railway station network was used to 

present the transportation. And exploratory spatial data analysis (ESDA) technique was utilized 

to detect the spatial relationship of spatial process of urban growth with railway station network. 

 In urban theories, a widely accepted assumption is the negative exponential decrease of 

density of development units such as building, people and resources illustrated as: 

xexf λβ −=)( .      (4-12) 

Where, x is the radial distance from the CBD situated at the core, and λ is the density gradient. 

The density gradient quantifies the extent of the urban spread around the central core. Urban 

models based on economic theory (Muth, 1969), discrete choice theory (Anas, 1982), and other 

approaches such as entropy maximization (Wilson, 1970) have made widespread use of the 

negative exponential function. In 1971, Batty has published his urban dynamic model based on 

the negative exponential function (Batty, 1971). Cheng and Masser (2003) have used this theory 

to explore the spatial patterns in data set (Cheng and Masser, 2003). Here, the CBD was 

extended to railway stations, and also density was extended to probability of change (it is defined 

as the possibility of land-use transited from developable land to urbanized area at any cell). It is 

assumed that probability of change is characterized with exponential increase or decrease in 
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relation to each development factor. In this case, function f(x) could be transferred to p(x) 

(probability) through the procedure: 

)()( lim xpe
D

CHp
x
pxf x

x

x

x
===∆≈

∆
∆

=
∆

∆

∞→∆

λβ .   (4-13) 

Where p(x) is the change probability function, ∆p the probability of change in the scope (x, x + 

∆x). When ∆x is very small, p(x) could be approximately equal to ∆p. ∆x is a radial distance 

interval, which should be as small as possible. CH∆x counts the total amount of land-use change 

located in the scope (x, x + ∆x), D∆x is the total amount of developable cells in the same scope. 

∆x is actually the buffering distance interval.  

 Equation 4-13 also can be: 

xxp λβ += )log())(log( .     (4-14) 

The slope λ indicates the degree of spatial influences; λ > 0 means a positive influence; λ < 0 

indicates a negative effect. The correlation coefficient R indicates its accuracy or reliability. 

From the standpoint of probability theory, ∆p represents probability value of the event of 

land-use change in the scope (x, x + ∆x).  

 Data set of railway station (Figure 4.13) comes from Digital Land Information (DLI) of 

Japan in 1989. According to equation (4-13) and (4-14), the relationship between urban growths 

in four active land-use types with railway stations was regressed as shown in Table 4.5. It shows 

that the railway stations obviously influence the land-use changes on vacant, residential, and 

commercial land, but not on industrial land.  

4.2.3 Suitability 

Land-use suitability is always associated with land slope (Chen et al., 2001). As digital land 

condition map of Japan was released in 2006, in this research land condition map was added to 

evaluate the land-use suitability for urban growth. 
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Figure 4.13 Railway stations in the Tokyo metropolitan area in 1989 
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Table 4.5 Result of the regression for exploring the relationship of urban growth with railway 

stations 

Coefficient 
 
 
 
Land-use type β λ R2 

Vacant land 0.069 -0.351 0.868 

Industrial land ** ** ** 

Residential land  0.102 -0.680 0.936 

Commercial land 0.018 -0.375 0.643 

 

**: p>0.05 

Others: p<0.01 
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 Land condition investigation in Japan was carried out from 1960 in order to provide 

important land-use suitability information for land-use planning and disaster prevention. The 

digital information in raster structure with high resolution of 100m grid was released from April 

1st of 2006. As no more information of slope is included in this data set, data set of altitude with 

50m mesh (Figure 4.14) was used to generate degree of slope for the study area. Slope degree 

was divided into six classes: 0º ~ 5 º, 5 º ~ 10 º, 10 º ~ 15 º, 15 º ~ 20 º, 20 º ~ 35 º, and more than 

35 º. The slope information was integrated into digital land condition map under the support of 

spatial module of ArcGIS 9.0. Table 4.6a and b show the classification and proposed code system 

of the integrated digital land condition map, and Figure 4.15 illustrates the integrated land 

condition map.  

 Evaluation of land-use suitability is a complicated process (Malczewski, 2006). As this 

research focuses on the spatial modeling approach for geosimulation of spatial process of urban 

growth, in order to simplify the evaluation of land-use suitability, concept of relative land-use 

suitability (Chen et al., 2001) is adopted: 

k

sk
sk N

AR = .       (4-15) 

Where, Rsk stands for the suitability of the integrated land condition class s for land-use type k; 

Ask the area of land-use type k in the integrated land condition class s; Nk total area of land-use 

type k. It was assumed that for so long time, the land-use types selected the land-use suitability 

underlying integrated land condition. In certain period, the relative land-use suitability keeps 

stable to a certain extent. The author checked the relative land-use suitability for four active 

land-use types in 1984 and 1989 respectively (Figure 4.16) and verified the assumption.  

4.2.4 Land-use zoning 

 Land-use zoning map expresses the urban and regional land-use planning policy of city 

government. Through land-use zoning plans the city is regulated to be occupied by land-uses in
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Figure 4.14 Altitude map of the Tokyo metropolitan area 

(Source: Geographical Survey Institute, released in 1997) 
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Table 4.6a Classification and code system of the land condition map 

First class Second class Code 

Cant with slope of 0 º ~ 5 º 0101 

Cant with slope of 5 º ~ 10 º 0102 

Cant with slope of 10 º ~15 º 0103 

Cant with slope of 15 º ~ 20 º 0104 

Cant with slope of 20 º ~ 55 º 0105 

A, Cant 

Cant with slope of more than 35 º 0106 

Wall rock 0202 

Bald ground 0204 

Landslide (landslip area) 0205 
B, Metamorphism area 

Landslide (accumulated area) 0206 

Higher-ranking bevel 0301 

High-ranking bevel 0302 

Medium-ranking bevel 0303 

Low-ranking bevel 0304 

C, Terrace 

Lower-ranking bevel 0305 

Rubbish area 0401 

Talus cone 0402 

Mud flow heap 0403 
D, Piedmont 

Mud flow terrace 0404 

Alluvial fan 0501 

Gently alluvial fan 0502 

Natural levee 0503 

Dune 0504 

Sandbar 0505 

E, Minute highland of depression 

Minute highland along ceiling river 0506 
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Table 4.6b Classification and code system of the land condition map 

First class Second class Code 

F, Valley Valley 0601 

Ravine plain 0701 

Coastal plain 0702 

Rear depression 0703 
G, General aspect of depression 

Old river channel 0704 

Flood bed 0802 

Low water flow bed 0803 

Swamp land 0804 

Falling moat 0805 

H, Near water terrain 

Tidal ground 0806 

I, Water Water 0901 

Leveling area 1001 

Leveling area for agriculture 1002 

Cut slope 1003 

Laid slope 1004 

High laid area 1005 

laid area 1006 

Filling area 1007 

Polder 1008 

Concave falling area 1009 

J, Artificial area 

Under construction 1010 

Lapillus hill 1201 

Scoriae hill 1202 

Craterwall 1203 
K, Volcano area 

Scoriae area 1204 

Source: Geographical Survey Institute, released in 2006 
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Figure 4.15 Land condition map of the Tokyo metropolitan area 

(Source: Geographical Survey Institute, released in 2006) 

(Note: See the Tables 4.6a and b for the definition of code) 
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Figure 4.16 Relative land-use suitability for active land-use types in 1984 and 1989. (a) vacant 

land; (b) industrial land; (c) residential land; (d) commercial land 
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space and time. White and Engelen (2000) have argued the importance of land sue zoning in 

urban and regional modeling. Saizen et al. (2006) have analyzed the relationship between 

land-use plans with urban land-use changes.  

As Japan experienced extremely high economic growth from 1950s to 1970s, and faced 

urgent issues of urbanization and industrialization especially in metropolitan areas (Takahashi 

and Taniuchi, 1994), the City Planning Act was enacted in 1968 (Saizen et al., 2006). It 

established a system to divide land into two types of urban planning zones, urbanization 

promotion zone and urbanization control zone, based on the “Policy on the Preparation, 

Development or Preservation of Urbanization Promotion Zones and Urbanization Control 

Zones” (Miyazawa, 1978). An urbanization promotion zone is either an already urbanized area or 

an area which policy-makers consider should be urbanized within the next 10 years or more long 

time. Main land-use types promoted also are regulated in these zones. Urbanization control zones 

consist of areas where urbanization must be constrained. In principle, they are designed as areas 

without urban facilities or anything else for promoting urbanization. There are specific standards 

and restrictions on development activities. Urbanization control zones are mainly designated for 

two purposes. First is to protect natural resources, such as forest and farmland, while the second 

is to reserve land for urban development in the future. However, some urbanization control zones 

in city fringes are often converted to urbanization promotion zones chiefly due to increasing 

demand for housing development and a lack of affordable land pricing in city centers (Saizen et 

al., 2006).  

 Digital land-use zoning map with 100m grid in 1989 was derived from high-resolution 

digital land information which was released by Geographical Survey Institute of Japan. Tokyo 

metropolitan area was divided into three kinds of planning: urbanization promotion area, 

urbanization control area, and non planning area. In urbanization promotion area, main land-use 

types of residential, industrial, commercial land were regulated. The map is shown in Figure 

4.17.  
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 The relationship of land-use changes with land-use zoning was analyzed to catch the effect 

of land-use zoning on land-use changes. The result is shown in Figure 4.18. This figure indicates 

the area percentage of increment of four active land-use types to different land-use zones. It is 

obvious that the percentage of residential land to residential urbanization promotion area is more 

than that to other zones and the percentage of industrial land to industrial urbanization promotion 

area is more than that to other zones. However, land-use change of commercial land did not 

show predominance in commercial urbanization promotion area. All of the land-use changes of 

four active land-use types took place in urbanization control area as the same as discussed by 

Saizen et al. (2006). In order to simplify this aspect of this calibration, relative land-use zoning 

effect index was adopted in this model from the concept of relative land-use suitability in section 

4.2.3. And the index was assumed to be relatively stable in a certain short period of several years. 

4.2.5 Random perturbation 

 The random perturbation parameter produces non-continuous (i.e. “leap-frog”) growth of 

urban land-uses based on a stochastic function. If the perturbation is increased, then the 

stochasticity of the simulation increases too. In this case, the value has to be fine-tuned to 

generate a sufficient number of new “seed” cells of various land-uses in new locations, which 

will subsequently develop into, for example, new industrial, commercial or residential land. 

Under this consideration, α was set 0.6 following a “trial and error” approach by comparing the 

NP metrics of simulated land-use map with reality in 1989. The value is same as the random 

perturbation parameter set in the geosimuliation for Berlin (Barredo et al., 2003).  

4.3 Implementation 

 GIS has provided a important platform for implementation of spatial modeling, especially  
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Figure 4.17 Land-use zoning map of the Tokyo metropolitan area in 1989 

(Source: Geographical Survey Institute) 
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Figure 4.18 Relationship of land-use change (from 1984 to 1989) with land-use zoning 
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for environmental issues (Clarke and Gaydos, 1998; Goodchild et al., 1996; Wagner, 1997). 

However, how to well integrate GIS with spatial modeling keeps a challenging yet (Clarke and 

Gaydos, 1998). Some current GIS applications provide a set of operators enough to develop 

spatial modeling: user defined filters, dynamic operations, overlay, reclassification, and a 

scripting language to put the operations in a logical order. Some other researchers have recently 

proposed ways of building CA functionality into GIS, or conversely, GIS functionality into CA. 

The second approach can be called loose coupling (Clarke and Gaydos, 1998). This research 

follows this approach to implement the proposed model of spatial process of urban growth by 

programming under VC++ environment and coupled with ArcGIS 9.0 software. 

In the context of this CA-based model, GIS served as two important roles. The first was as 

data integrator. All the spatial data were processed in ArcGIS 9.0 software in either GRID file or 

SHAPE file. Further modeling and analysis depended on this essential first step, what Chrisman 

has called a ‘Universal requirement’ for GIS (Chrisman, 1997). Secondly, GIS allowed the 

results of simulation to be reintroduced into the GIS data sets available for visualization and 

further application. By broadening the definition of GIS, such as that of GIScience, the model 

coding can even viewed as part of the science, if not part of the system (Goodchild, 1992). 

Obviously, within this loose coupling approach, the possibility of delivering the model to 

end-users as a stand-alone software is a clear advantage.  

4.4 Results and discussions 

Spatial process of urban growth in the Tokyo metropolitan area from 1989 to 1994 was 

simulated using the CA-based urban geosimulation model according to the results of model 

calibration in the period of 1984 to 1989. This simulation also represents the prediction of spatial 

process of urban growth in the study area. Result of the simulation was tested by comparison 

with actual land-use datasets to assess the model proposed in this research and discuss the spatial 
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process of urban growth in the Tokyo metropolitan area. The comparison was implemented in 

two levels according to the land-use classification system in Table 4.3: level one and level two. 

In level one (macro classification scale), urbanized area in 1994 was emphasized in order to 

discuss the general characteristics of urban growth in the study area when considering city as one 

object like an “organism” (Batty and Xie, 1994; Batty et al., 1999). As this research divided 

urbanized area into more detailed land-use categories and assumed that the result of urban 

growth was derided from the emergence, interaction, and competition of these land-use 

categories, the result of the simulation of detailed land-use categories in level two (micro 

classification scale) also was discussed towards cognizing the characteristics of spatial process of 

these land-use categories.  

Although more research is needed in order to generate new appropriate testing methods for 

CA-based urban models (White et al., 1999), several approaches are feasible. The simulation 

was discussed in four ways for both classification scales (macro classification scale and micro 

classification scale):  

1) a quantitative comparison through cell-by-cell; 

2) comparison of spatial form of urbanized area through fractal dimension; 

3) comparison of urban landscape through spatial metrics; 

4) regional characteristics. 

4.4.1 Land-use of the Tokyo metropolitan area in 1994 at 

macro classification scale 

1) A quantitative comparison through cell-by-cell 

The result of simulated land-use pattern in 1994 is shown in Figure 4.19. This figure also 

indicates the good visual comparison of land-use pattern between simulation and reality. 

 The precision was evaluated through comparing the simulated land-use pattern with actual  
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Figure 4.19 Visual comparison of the land-use pattern between reality and simulation in 1994 
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one through cell-by-cell. This approach is useful for identifying the cells that are identical in both 

maps of simulation and reality. Although this approach generates quantitative measures of 

coincidence for the two maps, there are some weaknesses in their implementation in CA-based 

urban models (Torrens and David, 2001; White et al., 1997; Wu, 1996). This procedure is not 

able to evaluate patterns and structure, since the procedure is based on independent comparisons 

between pairs of cells, and therefore is unable to take account of patterns or distributions in 

nature. This means that small displacements are identified as discordances, and the same 

discordance will be stated if the displacement is of 100 cells instead of 1 (Barredo et al., 2003). 

On the other hand, in land-uses with a low number of cells, the kappa coefficient value will not 

yield a useful statistical indicator. Regardless of these drawbacks the technique was applied for 

testing the simulations in this research.  

Table 4.7 shows the result of accuracy assessment of the simulation using approach of 

cell-by-cell comparison. Where, producer’s accuracy is a measure of the precision of a particular 

classification scheme. It shows what percentage of a particular ground class was correctly 

simulated. User’s accuracy is a measure of the reliability of an output map generated from a 

classification scheme. It is a statistic that can tell the user of the map what percentage of a class 

corresponds to the ground-truth class. Overall accuracy reflects the percentage of correctly 

simulated cells. Table 4.7 indicates that all the values of producer’s accuracy and user’s accuracy 

as well as the overall accuracy exceed the high level of more than 95%. Value of Kappa 

coefficient even reaches 0.94. These results testified the high accuracy, so that the function, of 

the prediction for spatial process of urban growth of the Tokyo metropolitan area in 1994 using 

this model.  

2) Spatial form of urbanized area in terms of fractal dimension 

As cities are complex emergent systems, urban geosimulation model should catch the 

characteristics of spatial form (White and Engelen, 1993; Wu, 2002). Chapter three analyzed the 

characteristics of urban growth in the Tokyo metropolitan area in terms of fractal dimension. 
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Table 4.7 Accuracy assessment of the simulation through cell-by-cell for 1994 at macro 

classification scale 

Class name Producer’s accuracy User’s accuracy 

Urbanized area 96.7% 96.7% 

Non-urbanized area 97.1% 97.1% 

Overall accuracy 96.9% 

Kappa coefficient 0.94 
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Here, the fractal dimension was used to check whether the simulation grasps the characteristics 

of the form of urban growth in the Tokyo metropolitan area or not. Area-radius plots for 

simulated urbanized area and reality in 1994 is shown in Figure 4.20. Considering the boundary 

effect, urbanized areas which are far more than 50km from Tokyo station were omitted because 

cell counts for these areas are dominated by boundary effects. It is obvious that actual urbanized 

area in 1994 has the bifractal form: inner zone of radius with 0-16km and outer zone of radius 

with 16-50km. In Figure 4.20, simulated urbanized area shows the same characteristics of 

bigractal form as actual urbanized area. Table 4.8 illustrates the comparison of fractal dimension 

of the urbanized area for both zones of radius with 0-16km and 16-50km between simulation and 

reality. The value of fractal dimension of the urbanized area in simulation is same as that in 

reality for both zones of inner and outer part. This testifies the capability of this model for 

predicting and presenting the spatial form of urban growth in the Tokyo metropolitan area in 

1994. 

 The value of fractal dimension of actual urbanized area in 1984 and 1989 also were 

calculated in order to discuss the characteristics of spatial form of urban growth in the Tokyo 

metropolitan area so as to further understand the validity of this model (Table 4.9). By 

comparing Table 4.8 and Table 4.9 it shows that the fractal dimension of the urbanized area did 

not change in the inner zone of 0-16km from 1984 to 1989, meaning stably complete 

urbanization process in the zone. The value of fractal dimension in this zone in 1994 grew just a 

little. The value of fractal dimension of the urbanized area in outer zone of 16-50km had grown 

0.05 from 1984 to 1989, and 0.03 from 1989 to 1994. This indicates the sustained urbanization 

process under stochastic effects in this zone. While the speed of urban growth had declined from 

1989 to 1994, the fractal characteristics had not changed. It could be forecasted that the spatial 

process would keep until the fractal dimension of outer zone reaches its biggest value as that of 

inner zone, which means that urbanization process even in outer zone would be complete by that 

time. The constrained CA model constructed in this research catches the characteristics of urban  
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Figure 4.20 Area-radius plots for simulated urbanized area and reality in 1994 
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Table 4.8 Accuracy assessment of the simulation through fractal dimension for 1994 at macro 

classification scale 

Fractal dimension 
in different radius zones Reality in 1994 Simulation in 1994 

In 0-16km radius 1.95 1.95 

In 16-50km radius 1.48 1.48 

 

 

 

Table 4.9 Fractal dimension of actual urbanized area in the Tokyo metropolitan area in 1984 and 

1989 

Fractal dimension 
in different radius zones Reality in 1984 Reality in 1989 

In 0-16km radius 1.94 1.94 

In 16-50km radius 1.40 1.45 
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growth in the Tokyo metropolitan area and can be used to as a prototype which is moved closer 

to end-users such as urban planners. It will be possible to extend the richness of the modeling 

framework to provide better estimates of future conditions producing future scenarios. 

3) Urban landscape in terms of spatial metrics 

 Spatial metrics were adopted to assess the ability of the model in simulating landscape of 

urban growth in the Tokyo metropolitan area. As discussed in chapter three, spatial metrics are 

different measure for analysis of characteristics of urban growth from fractal dimension. Fractal 

dimension can be used to catch the spatial structure of urban growth at the level of the whole 

metropolitan area, while spatial metrics can grasp the characteristics of fragmentation or 

conglomeration in urban growth. As the change of NP (number of patch) and PD (patch density) 

in spatial metrics can represent this kind of characteristics of urban growth (Zhao and Murayama, 

2006b), both of them were selected in this assessment.  

Figure 4.21 shows the comparison of urban growth significance of spatial metrics of 

urbanized area between reality and simulation in the Tokyo metropolitan area. In order to 

understand the change of spatial metrics in the spatial process of urban growth, values of NP and 

PD of urbanized area in 1989 also were calculated. It shows the same characteristics of urban 

landscape in the process of urban growth of the Tokyo metropolitan area as discussed in chapter 

three that with the process of urban growth, the values of NP had decreased from 9,909 to 9,609 

and PD had decreased from 1.20 to 1.16 in reality within the period of 1989 to 1994. This 

phenomenon indicates the characteristic of the compact growth or conglomeration of the existing 

urbanized area in the Tokyo metropolitan area. Simulated urbanized area also shows the same 

characteristics in 1994. The value of NP of simulated urbanized area is 9,594, just a little 

difference from that in the reality. Therefore, it is clear that this model grasps the characteristic of 

landscape change in the process of urban growth of the Tokyo metropolitan area.  

In fact, neighborhood interactions in CA-based urban geosimulation model contribute to this 

characteristic of urban growth. As this research proposes one new approach for modeling the 
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Figure 4.21 Comparison of urban growth significance of spatial metrics between reality and 

simulation in the Tokyo metropolitan area 
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neighborhood interactions, simulation of urban growth in the study area without the component 

of neighborhood effect in the model for 1994 was carried out in order to assess the function of 

the new method. The result also is shown in Figure 4.21. It shows that the value of NP of 

urbanized area without neighborhood effect reaches 12,561, and value of PD comes to 1.52, both 

of which are much more than the values in the reality. This proves the validity of the 

neighborhood interactions method proposed in this research in modeling spatial process of urban 

growth of the Tokyo metropolitan area. 

4) Regional characteristics 

 Although the assessments above show the goodness-of-fit of this model in simulating spatial 

process of urban growth in the whole Tokyo metropolitan area, in this large study area, different 

regions would take distinct characteristics of urban growth. It is necessary to check the 

goodness-of-fit of the model in presenting the spatial process of urban growth in different 

regions.  

 Considering the bifractal forms of urbanized area in the study area and orientations of urban 

growth (Batty et al., 1999), the Tokyo metropolitan area was divided into 3 zones – 0-16km, 

16-50km and more than 50km - according to the location in fractal parts and the distance to the 

center – Tokyo station. Four directions – Northeast (NE), Northwest (NW), Southwest (SW) and 

Southeast (SE) – were set for every zone. Therefore, 12 regions were generated in the study area. 

In every region, the proportion of urbanized area to total region area was calculated for the 

reality and simulation in 1994 respectively, and the difference was yielded through proportion of 

urbanized area in the reality minus that in the simulation. + means proportion of urbanized area 

in the reality is more than that in the simulation; otherwise, -. The result is shown in Figure 4.22.  

 Generally, Figure 4.22 shows that the differences are relatively small in the second fractal 

zone with radius of 16-50km and also in the south of first fractal zone with radius of 0-16km. 

This means that this model is relatively fitted to these regions in modeling the spatial process of 

urban growth. In other regions the differences are a little big. In all the directions of the third 
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fractal zone with radius of more than 50km, amount of the simulation of urban growth is a little 

less than that of the reality. The amount of the simulation, however, is more than that of the 

reality in the first and second fractal zone, especially in north of the first zone. This phenomenon 

expresses the effect of boundary of study area. Actually, the metropolitan area is an open system, 

which exchanges matters and information with outside every minute. As one study area, the links 

with outside should be simplified. This process diminishes the effect of borderlands, and 

enhances central areas. Accordingly, central areas show stronger charms to urban growth.  

 Based on discussions above, Figure 4.22 provides two inspirations to further research in 

urban geosimulation modeling: considering the characteristics of regional difference and open 

system of the study area. 

4.4.2 Land-use of the Tokyo metropolitan area in 1994 at 

micro classification scale 

 There ten categories in level two of land-use classification system used in this research. In 

order to simplify the discussion, this research focuses on three active land-use categories in 

urbanized area: residential, commercial, and industrial lands as three of which stand for the 

elementary urban activities in urban growth at micro classification scale.  

 Figures 4.23, 4.24, and 4.25 respectively show the results of simulated land-use pattern of 

residential, commercial, industrial land in 1994. These figures also indicate the visual 

comparison of land-use pattern of these categories between simulation and reality. 

 Table 4.10 shows the accuracy assessment of simulated land-use through cell-by-cell 

approach at micro classification scale in the Tokyo metropolitan area in 1994. All the values of 

the producer’s accuracy and user’s accuracy of residential, commercial, and industrial land are 

more than 90%, showing accepted high precision. Kappa coefficient also reaches high level of  

0.95 at the micro classification scale. Nevertheless, compared with the Table 4.7 at macro  
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Figure 4.22 Distribution of the difference of the proportion of urbanized area to the region 

between reality and simulation in 1994 
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Figure 4.23 Visual comparison of land-use pattern of the residential land between reality and 

simulation in 1994 
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Figure 4.24 Visual comparison of land-use pattern of the commercial land between reality and 

simulation in 1994 
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Figure 4.25 Visual comparison of land-use pattern of the industrial land between reality and 

simulation in 1994 
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classification scale, Figure 4.10 shows that accuracy of the detailed land-use types at micro 

classification scale is lower than that of aggregated type at macro classification scale. Moreover, 

the accuracy of distinct land-use types at micro classification scale is different. Residential and 

industrial lands take higher accuracy than commercial land.  

 As discussed in section 4.4.1, cell-by-cell approach can not grasp the characteristics of urban 

form change in the process of urban growth. Fractal dimension also was used to analyze the 

change of urban form at micro classification scale. Area-radius plots for detailed land-use types – 

residential, commercial and industrial land - between reality and simulation in 1994 are shown in 

Figure 4.26. Compared with Figure 4.20, fractal dimension of these detailed land-use types takes 

different characteristics from that of urbanized area in the study area. Figure 4.26a shows that in 

the zone of 0-2km from Tokyo station, area of residential land is very low. From 2km to 14km, 

fractal dimension becomes steep, and in the zone of 14-50km, the value of fractal dimension 

decreases. Fractal dimension of commercial land in the zone of 0-3km is higher than that in the 

zone of 3-50km where it does not shows obvious difference. This presents the compact 

development of commerce in the zone of 0-3km from Tokyo station. Industrial land takes 

multi-fractal dimension in the study area, meaning the characteristics of industrial development 

at the distance from Tokyo station. However, although fractal dimension of these detailed 

land-use types is different from each other, this model well simulated the fractal dimension of 

these land-use types as in Figure 4.26 the area-radius plots of simulation is same as that of the 

reality. This means that this model well catches not only the characteristics of urban form 

changes but also the characteristics of detailed land-use types in the process of urban growth of 

the Tokyo metropolitan area.  

 As for landscape change of detailed land-use types in the process of urban growth, Figure 

4.27 shows the comparison of urban growth significance of spatial metrics at micro classification 

scale between reality and simulation in the Tokyo metropolitan area. Although the Tokyo 

metropolitan area took characteristics of compact growth or conglomeration of the existing  
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Table 4.10 Accuracy assessment of the simulation through cell-by-cell for 1994 at micro 

classification scale 

Class name Producer’s accuracy User’s accuracy 

Non-urbanized area 97.3% 97.3% 

Industrial land 95.8% 95.8% 

Residential land 95.5% 95.5% 

Commercial land 90.2% 90.2% 

Other urbanized area  92.6% 92.6% 

Overall accuracy 95.8% 

Kappa coefficient 0.95 
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Figure 4.26 Area-radius plots for detailed land-use types between reality and simulation in 1994. 

(a) residential land; (b) commercial land; (c) industrial land 

(a) 

(b) 

(c) 
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urbanized area as shown in Figure 4.21, the growth characteristics of detailed land-use types 

were different. Residential land took characteristic of compact growth or conglomeration, the 

same as urbanized area at macro classification scale, while commercial and industrial land 

showed characteristic of dispersive growth. Figure 4.27 indicates that this model also grasps the 

characteristics of landscape change of these detailed land-use types in the process of urban 

growth. 

 Figures 4.28, 4.29, and 4.30 respectively illustrate the distribution of difference of the 

proportion of residential, commercial, and industrial land to the region between reality and 

simulation in 1994 towards analyzing the regional characteristics of change of detailed land-use 

types. Although three detailed land-use types show the difference of land-use change in distinct 

region, boundary effect on these land-use types are same as discussed in section 4.4.1. These 

three figures present the goodness-of-fit of this model to simulate the spatial process of urban 

growth in the Tokyo metropolitan area at micro classification system.  
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Figure 4.27 Comparison of urban growth significance of spatial metrics at micro classification 

scale between reality and simulation in the Tokyo metropolitan area. (a) residential 

land; (b) commercial land; (c) industrial land 

(a) 

(b) 

(c) 
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Figure 4.28 Distribution of the difference of the proportion of residential land to the region 

between reality and simulation in 1994 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 Distribution of the difference of the proportion of commercial land to the region 

between reality and simulation in 1994 
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Figure 4.30 Distribution of the difference of proportion of industrial land to the region between 

the reality and simulation in 1994 
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Chapter Five 

Conclusions 

 Cellular automata (CA) have been in popular use for urban simulation as CA have many 

advantages for modeling urban phenomena, including their decentralized approach, the link they 

provide to complexity theory, the connection of form with function and pattern with process, the 

relative ease with which model results can be visualized, their flexibility, their dynamic approach, 

and also their affinities with geographic information systems and remotely sensed data. 

Geosimulation of urban phenomena by modeling spatial processes of urban growth using CA 

coupled with GIS provides a visualized approach to well understand and predict the spatial 

process of urban growth in the future. However, CA modeling in urban geosimulation is still in 

its infancy and at a development phase, being faced with many challenges, such as grid size 

selection of CA, identification of cell state, neighborhood interactions modeling as well as 

appropriate calibration. 

As one of top megacities in the world, urban land-use have greatly changed in last century in 

the Tokyo metropolitan area as the population have grown largely, and the trend would continue 

according to the population projection. This research aimed at gaining experience with the 

application of cellular automata to modeling spatial processes of urban growth for the Tokyo 

metropolitan area at high-resolution level so as to improve the methodology of application of CA. 

In particular, this research focused on three fundamental elements of the CA - the grid size, the 

cell states, and the neighborhood effect. 
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This research indicates that urban structure of the Tokyo metropolitan area took the bifractal 

structure in the period 1974 to 1994. In inner zone with 0-15km radius in the period, all the 

fractal dimensions were close to their ultimate value and kept relatively stable. This means that 

in this zone, the urbanization process was almost complete. In the outer zone with 15-50km 

radius, the fractal dimensions were very active. From 1974 to 1994, the fractal dimension in this 

zone had grown gradually. The process of urban growth in this zone still kept the characteristics 

of fractal dimension. It can be predicted that in the future, the trend would keep, and fractal 

dimension would increase to reach the high level as in inner zone. Meanwhile, the analysis of 

spatial metrics for this area illustrated the characteristic of compact growth or conglomeration of 

the existing urbanized area in the Tokyo metropolitan area. The model proposed in this research 

simulates the main characteristics in the process of urban growth.  

 Grid size of CA and urban land-use classification systems affect the understanding of the 

spatial process of urban growth. This research provides theoretical justification for selecting grid 

size and land-use classification system in CA-based urban models. Considering the confused 

status in selecting cell size for CA, theoretical analysis of characteristics of spatial scale effect on 

land-use pattern was carried out using spatial autocorrelation index in this research. The results 

show that all the land-use types take the characteristics of positive spatial autocorrelation, and at 

grid size of 100m×100m, the land-use patterns keep relatively table and representative. The 

effect of spatial scale comes from the procedure of aggregating small cells into big cells as this 

procedure generates the loss of information. The effect of land-use classification systems on the 

land-use pattern analysis also was theoretically explored. The results indicate that land-use 

classification systems affect the land-use pattern analysis. With aggregating multiple land-use 

categories into one category, land-use pattern becomes stable relatively across a large range of 

grid size. However this is a result of trade-off of decreasing land-use classification information. 

Cell size and cell states are most important elements in CA. Previously, few researches have 

theoretically explored the relationship of them with application of CA to urban geosimulation 
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models. This research exploringly focuses on these problems. The findings theoretically provide 

useful information for identifying cell size and cell states in the application of cellular automata. 

 Neighborhood interaction model proposed in this research provides a new method to 

calibrate the neighborhood effect in the spatial processes of urban growth instead of traditional 

“trial and error” approach. Neighborhood effect is one important component in urban dynamics 

and CA-based urban geosimulation models. Traditionally, neighborhood effect model was made 

empirically. Neighborhood effect model based on the integration of the theory of Tobler’s First 

Law of Geography with Reilly’s gravity model and coupled with logistical regression approach, 

proposed in this research, grasps the theoretical nature of the neighborhood interactions in urban 

dynamics. Simulation results validate the usefulness of the neighborhood effect model. More 

importantly, the neighborhood effect model not only can be used in raster structure, but also 

would be used in vector structure as it considers both area and distance. This is an important 

research theme for next step. In the fourth international conference on GIScience held in 

Germany, this model has been appraised as ‘innovative’ (Zhao and Murayama, 2006c).  

 Calibration is very important procedure in constructing spatial model. This research shows 

that using negative exponential decrease function of urban theory to explore the effect of 

transportation on urban dynamics stands for an alternative approach for calibration of urban 

geosimuation model. The exploration results indicate the effect of railway stations on the 

land-use changes of vacant, residential, and commercial land, but not on the land-use changes of 

industrial land. Detailed land condition map and land-use zoning map provide excellent data sets 

for calibrating the urban geosimulation model.  

Urban geosimulation model proposed in this research can visually and well simulate spatial 

process of urban growth of the Tokyo metropolitan area, and can be used for predicting spatial 

processes of urban growth of the Tokyo metropolitan area by urban planners. This model was 

used to simulate spatial process of urban growth in the Tokyo metropolitan area in 1994. The 

results of simulation were discussed at both macro classification scale and micro classification 
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scale in four ways: quantitative comparison through cell-by-cell, comparison of spatial form of 

urbanized area through fractal dimension, comparison of urban landscape through spatial metrics, 

and regional characteristics analysis compared with actual land-use pattern in 1994. The results 

indicate that the constrained CA model constructed in this research catches the characteristics of 

spatial process of urban growth in the Tokyo metropolitan area and can be used to as a prototype 

which is moved closer to end-users such as urban planners. It will be possible to extend the 

richness of the modeling framework to provide better estimates of future conditions producing 

future scenarios.  

 CA modeling in urban geosimulation is still in its infancy and at a development phase. 

Seamlessly integrated models of urban dynamics based on socio-economics-biophysics 

interactions stands for the new research direction in CA modeling. Such a model could possibly 

be even a more effective tool for urban and regional planning. 
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Appendix 

Fractal dimension of the cities 

 As geometrical objects, cities may be thought as Cantor dusts in two-dimensional space, or, 

more appropriately for cellular models, as Sierpinski carpets (Figure A.1), with, of course, a 

stochastic element in the pattern. For such objects it has been shown that 

,iDi qB −=         (A-1) 

where B is the number of cells occupied by the original object (B = 5 in Figure A.1), i is the step 

number, q is the scale reduction factor (in Figure A.1, for example, at each step the scale of the 

original figure is reduced by a factor of 1/3), and D is the fractal dimension. Solving this 

relationship for D, one obtains 

),1lg(/)(lg
q

BD =        (A-2) 

which allows the dimension of the Sierpinski carpet to be calculated directly. 

 The fractal dimension, D (D < 2) reflects the fact, evident in Figure A.1, that as the object 

expands in cell space the number of cells composing it grows less rapidly than the number of 

cells in the square area necessary to contain it, so that the object becomes more sparse. In 

particular, the length L of a side of the figure is 

,1
i

q
L ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=          (A-3) 

and the total number of occupied cells, BT, by 
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.i
T BB =          (A-4) 

Thus the relationship between the size of the object, as measured by the number of cells 

composing it, and its diameter, is given by  

.D
T LB =          (A-5) 

Then,  

,lglg rDcBT +=        (A-6) 

where, c is a constant and r is the radius of the object. D is the fractal dimension. 
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Figure A.1 Three stages in the construction of a Sierpinski carpet. (a) S = 1; (b) S = 2; (c) S = 3, 

where S is the step number 

 

 


