Division of Spatial Information Science Graduate School Life and Environment Sciences University of Tsukuba

Coordinate Systems

Prof. Dr. Yuji Murayama

Surantha Dassanayake

Introduction

- This overview of coordinate systems for georeferencing provides a brief description local \& global systems for use in precise positioning, navigation and geographic information systems for the location of points in space.

Used co-ordinate systems

- There are many different coordinate systems based on a variety of geodetic datum, units, projections and reference systems in use today.

Datum	Coordinate System	Units
NAD 83	Geodetic Latitude, Longitude	Deg:Min:Sec
WGS 84	World Geographic Reference System	Deg:Min:Sec

Plane Coordinate System

Two dimensional coordinate systems are defined with respect to a single plane.

Polar Coordinates in a plane

Point referenced by Radius and Angle of directed line $r=3.5$, $\theta=60^{\circ}$

3-d Cartesian Coordinates

3-d Polar Coordinates

$X=r \cos (\varphi) \cos (\Theta)$ $y=r \cos (\varphi) \sin (\Theta)$
$z=r \sin (\varphi)$

Three dimensional coordinate systems can be defined with respect to two orthogonal planes.

2-D coordinate transformation

- Transformation from polar into rectangular coordinates

Linear conformal, similarity or Helmert transformation

$$
\begin{aligned}
& X=A+C x+D y \\
& Y=B-D x+C y
\end{aligned}
$$

(X, Y) - Coordinate System 1 (Terrain coordinates)
(x,y) - Coordinate System 2 (Image coordinates)
(A,B,C,D) - Transformation parameters

$$
\begin{aligned}
& C=\operatorname{Cos} \alpha \\
& D=\operatorname{Sin} \alpha
\end{aligned}
$$

A $=$ Shift in x direction
$B=$ Shift in y direction

The position on Map \& Image

Affine Transformation

$X=A+C x+D y$
$Y=B-E x+F y$
(X,Y) - Coordinate System 1 (Terrain coordinates)
(x,y) - Coordinate System 2 (Image coordinates)
(A,B,C,D,E,F) - Transformation parameters

$$
\begin{aligned}
& C=m 1 \operatorname{Cos} \alpha \\
& D=m 1 \operatorname{Sin} \alpha \\
& E=m 2 \operatorname{Sin} \beta \\
& F=m 2 \operatorname{Cos} \beta
\end{aligned}
$$

A $=$ Shift in x direction
$B=$ Shift in y direction

Helmert Vs Affine Transformation

Translation of the axes or change of origin, corresponding to the coefficients A and B in both equations

Change of scale from one grid system to other
Rotation of the axes of one grid system with respect to other directions in the other

References :

http://www.cnr.berkeley.edu/~gong/textbook/
http://www.science.edu.sg/ssc/virtual ssc.jsp
http://www.map-reading.com
http://www.gsd.harvard.edu/gis/manual/projections/fundamentals/
http://www.w3.org/TR/SVG/coords.html

