


University of Tsukuba

## Fundamentals of Geographic Information System

PROF. DR. YUJI MURAYAMA RONALD C. ESTOQUE JUNE 28, 2010

## **CONTENTS OF THIS LECTURE PRESENTATION**

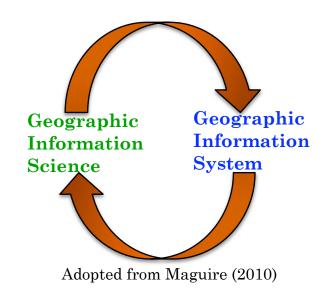
Basic concept of GIS
Basic elements of GIS
Types of GIS data
Examples of GIS applications

# Basic Concept of GIS

## BASIC CONCEPT OF GIS 1/5

#### • What does GIS stand for?

- <u>Geographic Information Science</u>
  - is the science concerned with the systematic and automatic processing of spatial data and information with the help of computers
  - is the theory behind how to solve spatial problems with computers
- <u>Geographic Information System</u>
  - •is a system designed for storing, analyzing, and displaying spatial data
  - is the use of hardware, software, people, procedures, and data


## **BASIC CONCEPT OF GIS 2/5**

#### • Geographic Information Science

• presents a framework for using information theory, spatial analysis and statistics, cognitive understanding, and cartography (Longley et al., 2005).

#### • Geographic Information System

• focuses on the processes and methods that are used to sample, represent, manipulate and present information about the world (Goodchild, 1992).



"GI Science allows us to consider the philosophical, epistemological & ontological contexts of geographic information & GI Systems provide the infrastructure, tools and methods for tackling real world problems within acceptable timeframes."

## BASIC CONCEPT OF GIS 3/5

## Literal Definition

- <u>*Geographic*</u> relates to the surface of the earth.
- <u>Information</u> is a knowledge derived from study, experience, or instruction.
- <u>System</u> is a group of interacting, interrelated, or interdependent elements forming a complex whole.
- <u>Science</u> is the observation, identification, description, experimental investigation, and theoretical explanation of phenomena.

## BASIC CONCEPT OF GIS 4/5

### • Functional Definition

• GIS is a system for inputting, storing, manipulating, analyzing, and reporting data.

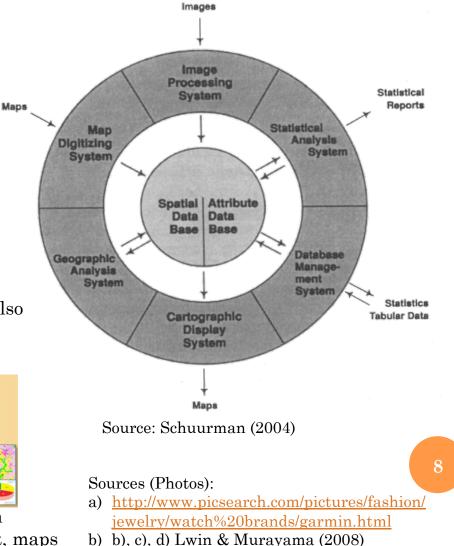
### • Component Definition

• GIS is an organized collection of computer hardware, software, geographic data, procedures, and personnel designed to handle all phases of geographic data capture, storage, analysis, query, display, and output.

## **BASIC CONCEPT OF GIS 5/5**

#### • Functions of GIS

- Data collection
   Capture data
- Data storing, processing & analysis
  - Store data
  - Query data
  - Analyze data
- Output production • Display data
  - Produce output




- •Data collection
  - using GPS & RS
  - paper maps are also sources of data



- •Data storing, processing & analysis
- - •Output production - statistical report, maps

#### • Components of GIS



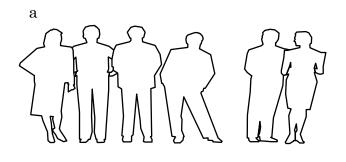
# Basic Elements of GIS

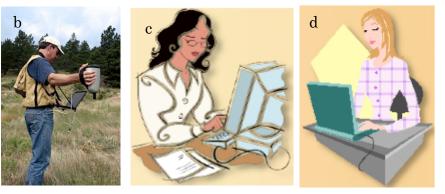
## BASIC ELEMENTS OF GIS 1/7

• People

o Data

- Software
- Hardware
- Procedures/Methods


Adopted from: Brooks (undated) <u>http://www.mapsofindia.com/gis/gis-components.html</u> <u>http://bgis.sanbi.org/gis-primer/page\_12.htm</u> <u>http://www.sfu.ca/rdl/GIS/tour/comp\_gis.html</u>


10

## **BASIC ELEMENTS OF GIS 2/7**

#### • 1. People

- are the most important part of a GIS
- define and develop the procedures used by a GIS
- can overcome shortcoming of the other 4 elements (data, software, hardware, procedure), but not vice-versa

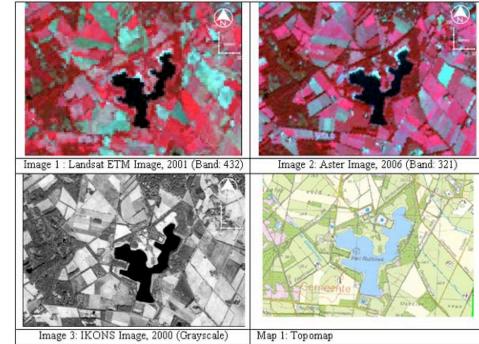




- Ground truth data collection
- Data storing, processing and analysis

11

Sources (Photos):

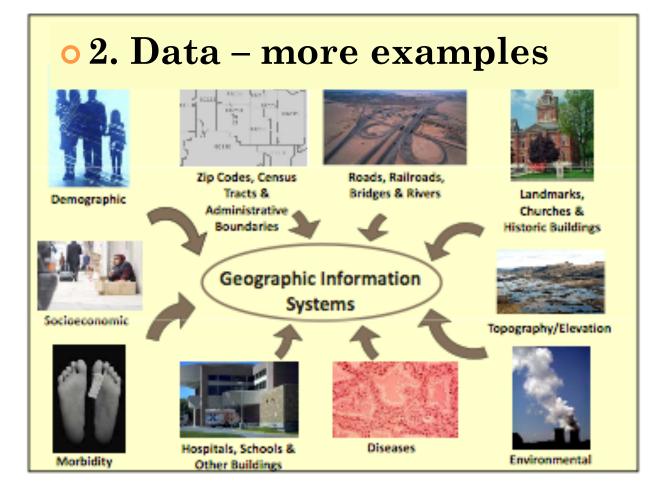

- a) Brooks (undated)
- b) <u>http://www.asdi.com/remote-sensing/</u> <u>applications/ground-truthing</u>
- c), d) Lwin & Murayama (2008)

## BASIC ELEMENTS OF GIS 3/7

## o 2. Data

- Data is the information used within a GIS
- Since a GIS often incorporates data from multiple sources, its accuracy defines the quality of the GIS.
- GIS quality determines the types of questions and problems that may be asked of the GIS

Remote Sensing and topographic data




#### Ground truth data

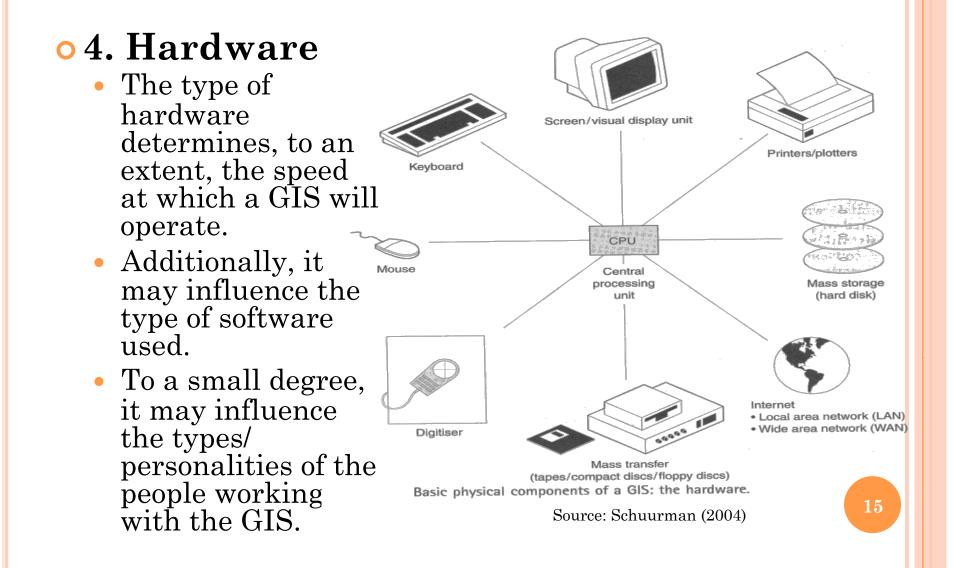
| Obs. Point | GPS    | Reading | Present<br>Landuse | ETM Image<br>2001 | IKONOS         | Topographic<br>Map |
|------------|--------|---------|--------------------|-------------------|----------------|--------------------|
|            | x      | Y       |                    | Class Name        |                | Legend Class       |
| 1          | 351642 | 5783025 | Forest             | Forest            | Forest         | Forest             |
| 18         | 350985 | 5783163 | Bare Land          | Grassland         | Grassland      | Grassland          |
| 17         | 351000 | 5782900 | Arable<br>Land     | Grassland         | Grassland      | Grassland          |
| 20         | 350700 | 5783200 | Forest             | Forest            | Forest         | Forest             |
| 23         | 351100 | 5783000 | Grassland          | Arable<br>Land    | Arable<br>Land | Arable Land        |

Source: Rahman (2009)

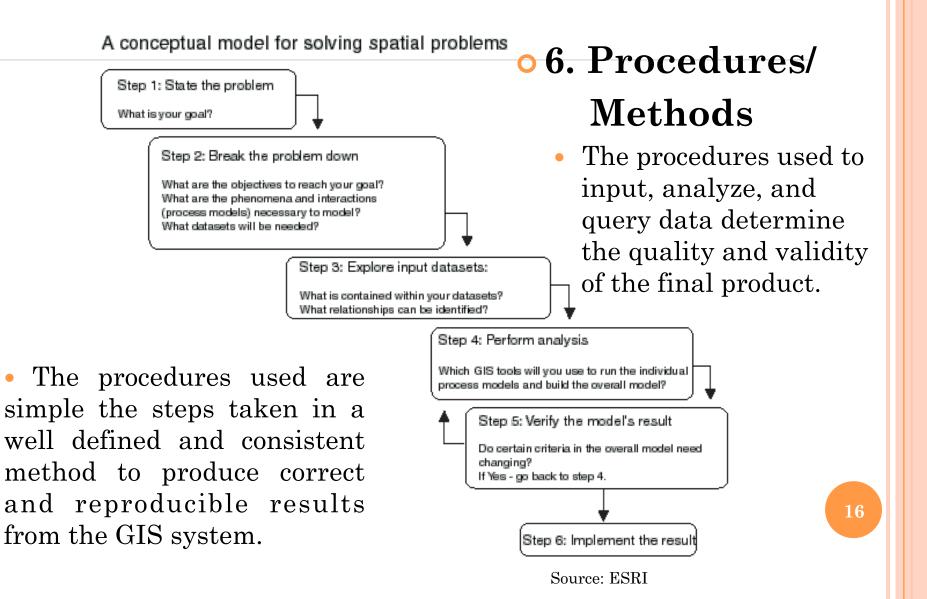
## **BASIC ELEMENTS OF GIS 4/7**



## **BASIC ELEMENTS OF GIS 5/7**


#### o 3. GIS software

- It encompasses not only to the GIS package, but all the software used for databases, drawings, statistics, and imaging.
- The functionality of the software used to manage the GIS determines the type of problems that the GIS may be used to solve.
- The software used *must* match the *needs* and *skills* of the end user.


#### • Popular GIS Software

- Vector-based GIS
  - ArcGIS (ESRI)
  - ArcView
  - MapInfo
- Raster-based GIS
  - Erdas Imagine (Leica)
  - ENVI (RSI)
  - ILWIS (ITC)
  - IDRISI (Clark Univ.)

## **BASIC ELEMENTS OF GIS 6/7**



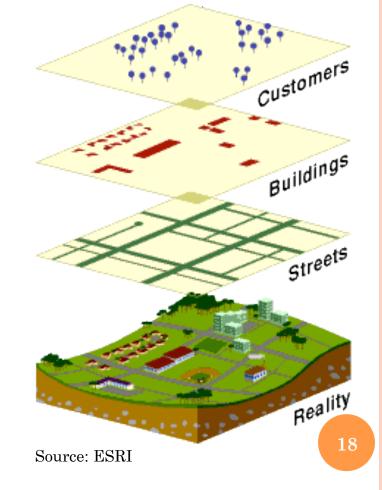
## **BASIC ELEMENTS OF GIS 7/7**

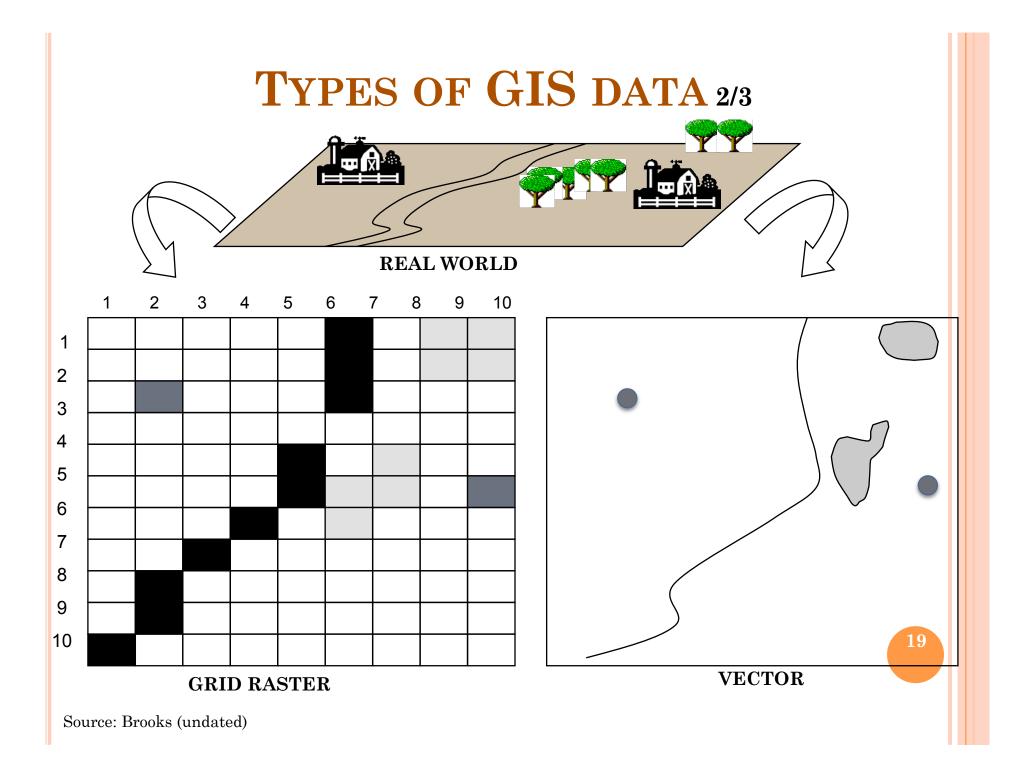


# Types of GIS Data

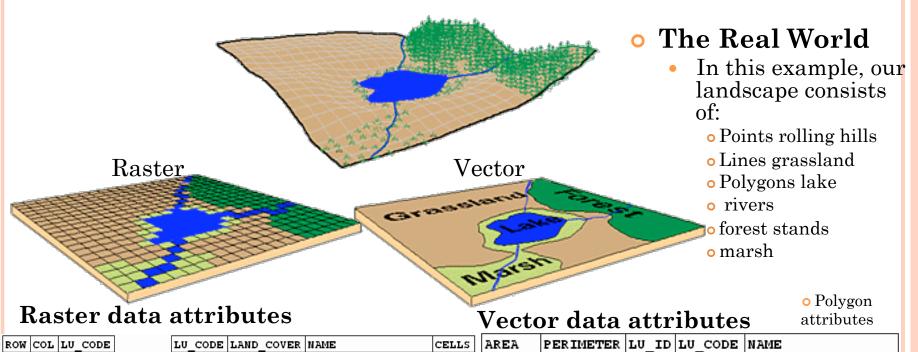
17

## TYPES OF GIS DATA 1/3


#### • Vector


- In the vector data model, features on the earth are represented as:
  - Points
  - Lines
  - Polygons

#### • Raster


- In the raster data model, a geographic feature like land cover is represented as:
  - single square cells
- Attribute
  - Attribite values in a GIS are stored as *relational database* tables.
  - Each feature (point, line, polygon, or raster) within each GIS layer will be represented as a record in a table.

• A GIS stores information about the world as layers of spatial features (customers, buildings, streets, and so





## TYPES OF GIS DATA 3/3



| W | COL | LU_COD | Ξ | LU_ | CODE | LAND  | COVER | NAME              | CELLS |
|---|-----|--------|---|-----|------|-------|-------|-------------------|-------|
| 1 | 1   |        | 2 |     | 1    | fores | st    | Sherwood Forest   | 100   |
| 1 | 2   |        | 2 |     | 2    | grass | sland | Marshall Field    | 150   |
| 1 | S   |        | 2 |     | 100  | lake  |       | Blue Lake         | 75    |
| 1 | 4   |        | 2 |     | 3    | marsł | ı     | Okeefenokee Swamp | 55    |
| - |     |        |   |     | 101  | rive  | c     | Suwanee River     | 20    |
| 1 | 19  | 10     | 1 |     |      |       |       |                   |       |

| AREA | PERIMETER | LU_ID | LU_CODE | NAME              |
|------|-----------|-------|---------|-------------------|
| 200  | 500       | 1     | 1       | Sherwood Forest   |
| 1250 | 10000     | 2     | 2       | Marshall Field    |
| 175  | 250       | 3     | 100     | Blue Lake         |
| 100  | 295       | 4     | 3       | Okeefenokee Swamp |

- Each cell has a coordinate representation within the table and a numeric value (i.e., LU\_CODE)
- Each LU\_CODE is associated with a full description through a *relational* join.

Source: http://gis.washington.edu/phurvitz/professional/SSI/attrib.html

| o Line    |       | NAME    | CODE | LU | rn <sup>_id</sup> | LENGTH |
|-----------|-------|---------|------|----|-------------------|--------|
| attribute | River | Suwanee | 101  |    | 4                 | 45     |
|           | River | Suwanee | 101  |    | 5                 | 50     |
| 90        | River | Suwanee | 101  |    | 6                 | 35     |
| - 20      |       |         |      |    |                   |        |

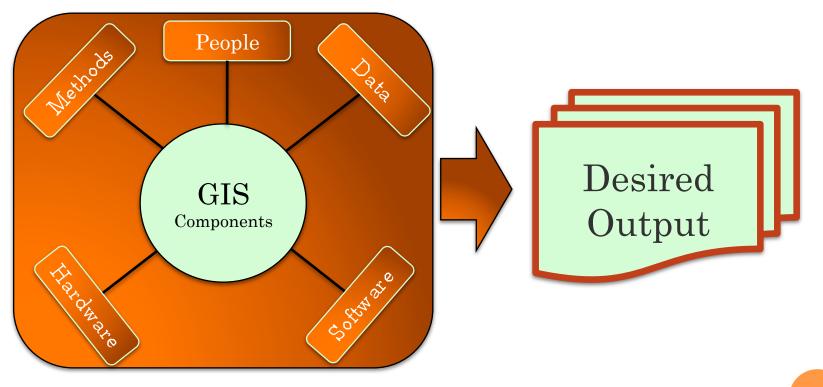
• Because the vector data represent both linear & polygonal features, there are 2 attribute tables.

# Examples of GIS Applications

21

## **EXAMPLES OF GIS APPLICATIONS 1/6**

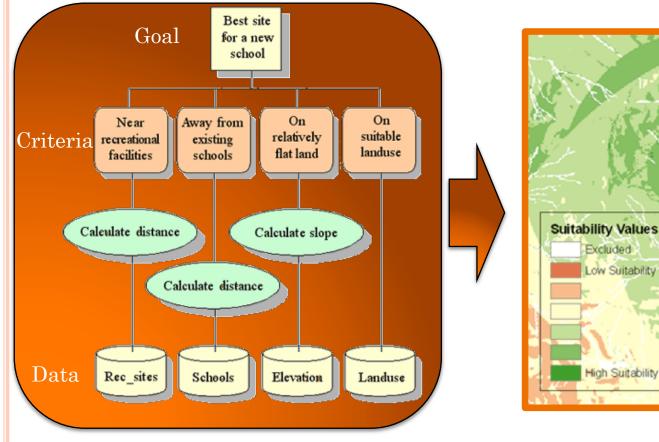
#### • A Framework for GIS Analysis






Source: ESRI

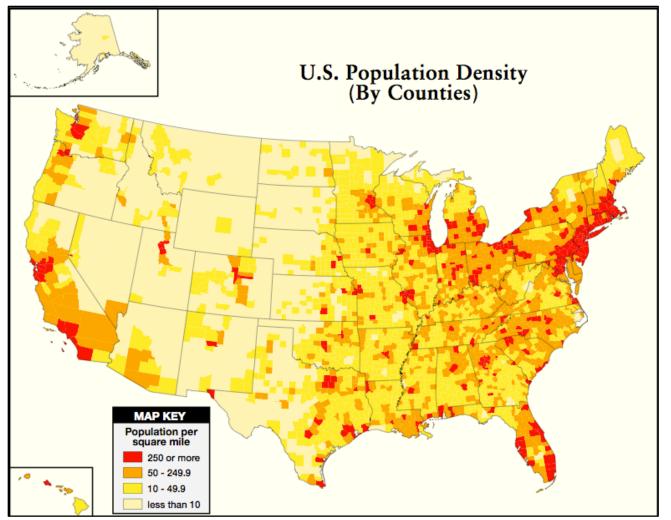
## **EXAMPLES OF GIS APPLICATIONS 2/6**


## • Integrating the five basic elements of GIS to produce the desired output.



Adopted from: <u>http://www.mapsofindia.com/gis/gis-components.html</u> <u>http://bgis.sanbi.org/gis-primer/page\_12.htm</u> http://www.sfu.ca/rdl/GIS/tour/comp\_gis.html 23

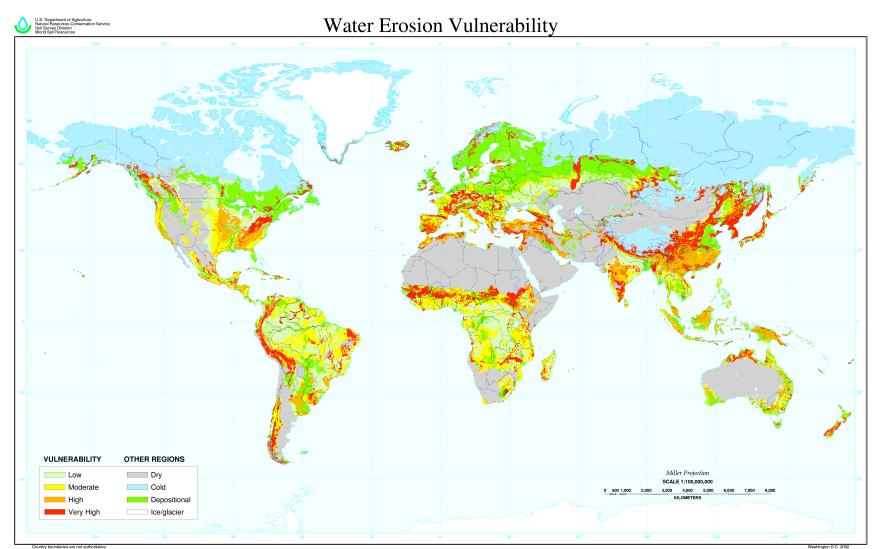
## **EXAMPLES OF GIS APPLICATIONS 3/6**


• Suitability analysis for the best site for a new school



Source: ESRI

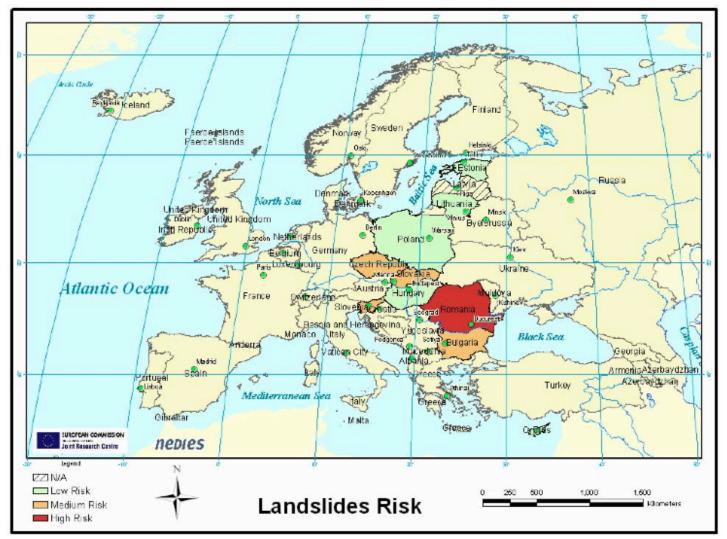
## **EXAMPLES OF GIS APPLICATIONS 4/6**


#### • Mapping population density



25

Source: http://www.census.gov/dmd/www/pdf/512popdn.pdf


## **EXAMPLES OF GIS APPLICATIONS 5/6**



Source: http://soils.usda.gov/use/worldsoils/mapindex/erosh20.html

### **EXAMPLES OF GIS APPLICATIONS 6/6**

#### o Landslide Risk Mapping



27

Source: http://www-eaps.mit.edu/faculty/perron/files/Booth09.pdf

## REFERENCES

- Brooks, T. (undated). Geographic Information Science and Systems. Center for Interdisciplinary Geospatial Information Technologies, Delta State University.
- Goodchild, M.F. (1992). Geographic Information Science.. International Journal of Geographical Information Systems 6(1): 31-45. Reprinted in P.F. Fisher, editor, Classics from IJGIS: Twenty years of the International Journal of Geographical Information Science and Systems. Boca Raton: CRC Press, pp. 181-198. [166]
- Longley, P., Goodchild, M., Maguire, D. & Rhind, D. (2005). Geographic Information Systems and Science. John Wiley & Sons, Ltd, England, UK.
- o Lang, L. (2003). Managing natural resources with GIS. ESRI, CA, USA.
- Lwin, K. & Murayama, Y. (2008). Fundamentals of Remote Sensing and its application in GIS. <u>http://giswin.geo.tsukuba.ac.jp/sis/en/tutoriale.html</u>
- o Maguire, D.J. (2010). GIS: A tool or science. http://www.gisdevelopment.net
- Rahman, M.R. (2009). Landuse Change Analysis of Rutbeek Recreational Area, Netherlands. <u>http://www.gisdevelopment.net</u>
- Schurrman, N. (2004). GIS a short introduction. Blackwell, Oxford.
- o http://www.esri.com
- o http://www-eaps.mit.edu/faculty/perron/files/Booth09.pdf
- o http://soils.usda.gov/use/worldsoils/mapindex/erosh2o.html
- o http://www.census.gov/dmd/www/pdf/512popdn.pdf
- o http://gis.washington.edu/phurvitz/professional/SSI/attrib.html
- o http://www.asdi.com/remote-sensing/applications/ground-truthing
- o http://www.sfu.ca/rdl/GIS/tour/comp\_gis.html
- o http://www.mapsofindia.com/gis/gis-components.html
- o http://www.picsearch.com/pictures/fashion/jewelry/watch%20brands/garmin.html
- o http://bgis.sanbi.org/gis-primer/page 12.htm