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Introduction

Overview

« Urban growth is one of the most important topics in urban studies.

e A city is considered as a complex system. It consists of numerous
interactive sub-systems and is affected by diverse factors including
governmental land policies, population growth, transportation
Infrastructure, and market behavior.

« TOo understand the driving forces of the urban form and structure
change, the satellite-based estimates are considered as the
appropriate methods to monitor these dynamically change in a long
term.

« Furthermore, modeling and simulation are believed to be powerful
tools to explore the mechanisms of urban evolution and provide
planning support in growth management.




Research purpose

o« Utilizing the Deep Learning of Machine learning to simulate and predict the
mechanisms of urban expanding and evolution.

UNSUPERVISED MACHINE LEARNING - SUPERVLSED MACHINE LEARNING







Research background

« Remote sensing multispectral image data, behavioral geography data (person trip),
transportation network data... —> bingata of geography

 How geography might provide a usefu,{/lens through which to understand big data
as a phenomenon in its own right? “/
Machine learning is believed to be t,he powerful tool to explore and analyze the
geography big data. /

/

What is machine learning?
Machine learning evolved from the study of pattern recognition and computational
learning theory in artificial intelligence (Al).

/ .
The computer learns to recognize The leamed machine looks for When it encounters a familiar pattern,

patterns in historicgl data. learned patterns. it predicts likely future developments.

h /IWWW. l|go.com/machine-learnin



Target (y)

Machine Learning:

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P If itS

performance at tasks in T, as measured by P, improves with
experience £ — T.Michell (1997)
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A History of Machine Learning

Subjective Popularity
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Erin Golge illustrates his subjective Machine learning timeline.
http://www.erogol.com/brief-history-machine-learnin



http://www.erogol.com/brief-history-machine-learning/

It Is all about machine learning...

What can | help you with

Intelligent voice assistant
http://www.apple.com/ios/siri/

Predictive policing
http://www.predpol.com/

Facial recognition Self-driving car
http://www.face-rec.org/ https://www.google.com/selfdrivingcar/ 8



http://www.predpol.com/
http://www.face-rec.org
https://www.google.com/selfdrivingcar/
http://www.apple.com/ios/siri/

How to connect the machine learning with geospatial data”?

_m Geospatial Big Data
¥ Remote sensing multispectral image data,

behavioral geography data (person trip),
transportation network data,
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Geosimulation
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Machine-learning behavioral geography (left), Big data movement analytics (right
Center for GIS, Department of Geographical Sciences, and UMIACS, University of Maryland

hitp://www.geosimulation.or
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http://www.geosimulation.org/

Machine learning in remote sensing
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Subjective Popularity

History of Machine Learning
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http://www.erogol.com/brief-history-machine-learning/

Springtime for Al: The Rise of
Deep Learning

After decades of disappointment, artificial intelligence is finally catching up to its early
promise, thanks to a powerful technique called deep learning

« Deep learning (also known as deep machine learning) is a new area of Machine
Learning research, which has been introduced with the objective of moving Machine

Learning closer to one of its original goals: Artificial Intelligence.

Deep Neural Network

« What the Deep Learning is used for?
« Big data analysis
« More accurate predictive analytics

Create models and learn patterns from

large-scale unlabeled data

« How deep learning works”?
It covers a particular approach to
building and training neural networks.

combinations of edges object models
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http://www.amax.com/blog/?p=804




Concept of Convolutional Neural Networks (CNN)

Deep Architecture in the Brain Visual System
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Principles of Neural Science, 4th Edition
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Concept of Convolutional Neural Networks
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http://deeplearning.net/tutorial/lenet.html

feature extraction

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly
complex rules to categorize complicated shapes such as faces.

Layer 1: The
computer
identifies pixels
of light and dark.

Layer 2: The
computer learns to
identify edges and
simple shapes.

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.

http://ufldl.stanford.edu/tutorial/supervised/
ConvolutionalNeuralNetwork/



http://ufldl.stanford.edu/tutorial/supervised/

Understandting CNN
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« TensorFlow is an Open Source Software Library for Machine Intelligence (CNN)
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http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.00543&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false

How to use Deep Learning to analyze anad
predict the urban land use/cover changes?




Concept ldeas:
CNN model framework for multispectral satellite image
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Experiment:
Multilayer Perceptron model (deep learning) for study area

R’

A fully connected MLP model, 6
iInput layer neurons, 6 hidden layer
neurons and 2 output layer
neurons model was constructed in
this study for each sub model.

The batch size (samples per class)
IS 10000, and 5000 times iteration
for per sub model running.
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Summary

« Deep machine learning is a powerful and robust tool to analyzing and predicting the
statistical, geographical and multispectral optical big data.

« We can predict and simulate the urban expanding and evolution (geographical big
data) in more reasonable and scientific method with deep learning.
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