# Scripting with Arc GIS 10: Introducing Python geo-processing

A GIS Lecture tutorial Prof. Yuji MURAYAMA, Ph.D Kondwani Godwin MUNTHALI, MSc.

2012

# Introduction - definitions

- What are we talking about? What is a script?
  - program written for a "software environment" that automates the execution of tasks which could alternatively be executed one by one by a human operator
    - i.e. Scripts are used to automate time-consuming or complex workflows
  - It is a form of programming language that is "interpreted" rather than "compiled"
    - An interpreter executes one command line at a time while a compiler compiles all the lines of commands into an executable file before executing them. Ok! Enough of jargons, google "compiler vs interpreter" if you want to learn more

# Introduction – who can script?

- Did you say scripting is a form of programming!? I am no programmer!
  - Relax!! Scripting isn't just for professional computer programmers.
    - there are much more powerful and complicated tools for professional programmers to use than scripts (with all due respect to scripts anyway)
  - In fact you don't need to be visionary or adventurous to try scripting, you just need to be the type of person who wants to save some time. SIMPLE!

# Introduction...ok!! but why should I script really?

- I guess the importance of scripts ought to have been obvious in the definition but anyway, imagine:
  - You have to perform a series of data management tasks on a regular basis
  - You have to perform a series of geo-processing tasks on several computers or several data sets
  - You want to consolidate and organize the output you get from the computer
  - You want to run tasks when you're not there to interact with the computer
  - You need to ensure the exact same actions are repeated each time a task is run
- Convinced? May be not! Lets try the fun part of it. May be not that too because it's still only the fanatics who think scripting is fun anyway!

# Introduction... anyway what are we trying to achieve?

- Objective
  - The aim of this lecture tutorial is to learn how to build and use python scripts for geo-processing in ArcGIS 10

- Python is free, cross platform, open source, stable, mature, simple, and powerful
- In ArcGIS?
  - Python is pervasive in ArcGIS 10.
  - It replaces Visual Basic for Applications (VBA) in the field calculator (although you may continue to use VBScript).

- In ArcGIS? ...Cont'd
  - The Python Window replaces the Command Line window.



In ArcGIS python geo-processing

\_\_\_\_

- The function names use the ArcGIS toolset and tool name (e.g., CreateFeatureClass\_management).
- ArcPy honors the ArcGIS licensing system, so tool access is identical in desktop applications and Python.
  - I.e. if a particular geo-processing module is not licensed under desktop application it will not also be licensed in ArcPy (Python) and vice versa
- ArcPy provides access to geo-processing environment settings.
- Custom user script tools may be loaded into the ArcPy geoprocessing environment and accessed and run just like the system tools that are installed with ArcGIS.

- Hold it there!! Lets not get ahead of ourselves
  - Python Manuals? (Start>...>ArcGIS>Python 2.6>Python Manuals).



Fig. 2 Python Introduction Help screen

# Lets get our hands dirty then, shall we?

- We will use "Image Classification" geo-processing tool as our example
  - **Task:** Imagine you are to classify satellite images for 10 different areas.
  - Data required: Some satellite image (You can download one for free here: <u>https://earthexplorer.usgs.gov/</u>) – we will use one for Johannesburg city for 2010

#### • Assumptions:

• This tutorial assumes you have already prepared a signature file for the RS image you will be using

### Getting our hands dirty.

- Inputs: your satellite image and signature (.gsg) file
- Accessing the tools
  - You can either "import" or use the "dot notation".
- At the end of each command press 'return key' (Enter)



Fig. 3 Accessing the Maximum Likelihood classier (MLClassfiy) through: a) "import"; and b) "dot notation"

#### Note:

 $\checkmark$  In Fig. 3a we have used the "dot notation" to access the spatial analyst (sa) from arcpy (arcpy.sa) and then imported all the tools in the spatial analyst (\*)

✓ Again, as you type the tools in either approach the "python window" will drop down all options available under the letter (s) you have typed in

✓While the "dot notation" can be quick for simple one-to-one commands the "import" utility is handy when the process is complex and requires a number of functions

# Getting our hands dirty...

- From either approach in Fig. 3, complete typing 'mlclassify (' (or select, by double-clicking, 'MLClassify' from the drop-down list and type "(")
  - Make sure you have something as in Fig. 4a below •

| Drop-down list of                                                                                                                                                                                                                                | Python                                                                                                     |                                                                                                                                                                                                                                                                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| all classifiable raster<br>data sets open in<br>your ArcMap 10. If<br>you cannot see your<br>satellite image load<br>it into your Arcmap<br>and try again                                                                                        | <pre>&gt;&gt;&gt; import arcpy<br/>&gt;&gt;&gt; from arcpy.sa import *<br/>&gt;&gt;&gt; MLClassify(</pre>  | <pre>MLClassify([in_raster_band,],<br/>in_signature_file, {reject_fraction},<br/>{a_priori_probabilities},<br/>{in_a_priori_file},<br/>{out_confidence_raster})<br/>Performs a maximum likelihood<br/>classification on a set of raster<br/>bands and creates a classified raster.</pre> |  |  |  |
|                                                                                                                                                                                                                                                  | Fig. 4a Entering the parameters for the 'MLClassify 'tool                                                  |                                                                                                                                                                                                                                                                                          |  |  |  |
| <ul> <li>Select yo</li> <li>Make</li> </ul>                                                                                                                                                                                                      | ur image from the drop-down list and type co<br>sure you have something as in Fig. 4b below                | mma (,)                                                                                                                                                                                                                                                                                  |  |  |  |
| Documentation section describes the parameters of the function you are using.<br>The highlight in this section indicates the parameter being entered (in Fig 4a we are inputting the image to be classified, in Fig. 4b it's the signature file) |                                                                                                            |                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                  | Python                                                                                                     |                                                                                                                                                                                                                                                                                          |  |  |  |
| ,                                                                                                                                                                                                                                                | <pre>&gt;&gt;&gt; import arcpy &gt;&gt;&gt; from arcpy.sa import * &gt;&gt;&gt; MLClassify("city10",</pre> | <pre>MLClassify([in_raster_band,], in_signature_file, {reject_fraction}, {a_priori_probabilities}, {in_a_priori_file}, {out_confidence_raster}) </pre>                                                                                                                                   |  |  |  |
| F                                                                                                                                                                                                                                                | ig. 4b Entering the parameters to run the 'MLClassify 'tool                                                | 12                                                                                                                                                                                                                                                                                       |  |  |  |

### Getting our hands dirty.

- Now before we actually run the classifier we need to introduce a few housekeeping issues: setting the workspace, mask etc.
- Study the ArcMap 10 documentation for the Maximum Likelihood tool and make sure you understand the parameters
  - Finish entering the parameters as in Fig.5 making relevant changes to the command parameters (eg path to signature file and mask etc)



## Result...

#### Input satellite image in true colour



Fig. 5b Result (right image) of running 'MLClassify' tool on the input (left image)



Legend

# This far....

- We have successfully managed to call and use the maximum likelihood classifier in ArcPy
- We have been introduced to a few housekeeping jobs
- We know where to go to seek python help in ArcGIS
- We know 2 ways of calling an ArcPy command

# What next?

- Well, image classification in ArcGIS 10 does not end here
- In fact there are a series of post classification steps to be taken to have a final better classified output
  - These include: filtering, smoothing, and generalization
- Accessing and using these tools is as has been demonstrated with the 'MLClassify' tool
  - If you are up for it take the challenge to do the post classification
- We will be moving on to the essence of this tutorial though: scripting

### Creating own scripting tool

- Reminder: the idea is to make repetitive tasks easier
- And our task is to classify 10 different satellite images
  - If you took the challenge in the previous slide you will have realized that it is a hectic task to classify one image let alone to do it repetitively
- Further advantages of a scripting tool
  - Portability (email .tbx and script)
  - Built in dialogs
  - Output to ArcMap data frame
  - Filtering to prevent errors
  - Toolbox, toolbar or context menu



Fig. 6 MLClassifier toolset along sing side Arc system tools

```
G:\Urban Trends Book project\scripting\classify.py - Notepad++
File Edit Search View Encoding Language Settings Macro
 ] 🔄 🔚 🖻 🔒 🔓 🚔 🖌 🖺 🌔 💭 🗲 👘 加 🧐
  classify.py
  2
       import arcpy
       from arcpy.sa import *
  2
  3
       import os
  4
  5
       #the file to be classified
  6
       inRaster = arcpy.GetParameterAsText(0)
  7
  8
       #the signature file to use
  9
       sig path = arcpy.GetParameterAsText(1)
 10
 11
       #output name of the classified image
 12
       classified = arcpy.GetParameterAsText(2)
 13
 14
       #run the maximum likelihood tool
 15
       out = MLClassify(inRaster, sig path)
 16
 17
       #save classified image
 18
       out.save(classified)
```

- Open a text editor of your liking and type in the contents as shown in Fig. 7 (I used notepad)
- Save the file as .py extension (e.g. classify.py)
  - Make sure the file has been saved as, for example, 'classify.py' and NOT 'classify.py.txt'

Fig. 7 Screenshot of notepad++ with our python script

```
G:\Urban Trends Book project\scripting\classify.py - Notepad++
File Edit Search View Encoding Language Settings Macro
 o 🔁 🖼 🖻 o 🕞 🕼 🎸 🗅 🌔 🗩 🙋 📾 🎭 🗠
                                                      Line 3, the line 'import os' is not necessary
classify.py
                                                      The workspace and mask commands in Fig. 5
        import arcpy
                                                      have been dropped for reasons we will explain
        from arcpy.sa import *
  2
                                                      later
  3
        import os
                                                      Line 9 replaces r'G:\Urban Trends Book
  4
                                                      project\Johannesburg\1990\signatures.gsg'in
  5
        #the file to be classified
                                                      Fig. 5
  6
        inRaster = arcpy.GetParameterAsText(0)
                                                      Line 12 and 18 combines to replace
  7
                                                      out.save("classoo_lr") in Fig. 5
        #the signature file to use
  8
  9
        sig path = arcpy.GetParameterAsText(1)
                                                      Line 15 replaces
 10
                                                      out = MLClassify(1990-jun.tif, sig path) in
        #output name of the classified image
 11
                                                      Fig. 5
        classified = arcpy.GetParameterAsText(2)
 12
 13
 14
        #run the maximum likelihood tool
 15
        out = MLClassify(inRaster, sig path)
 16
 17
        #save classified image
 18
       out.save(classified)
```



Fig. 8 Screenshot of Toolboxes in Arc Catalog



Fig. 9 Screenshot of Toolboxes in Arc Catalog

- In ArcMap navigate to the Toolboxes in Catalog
- Right click My Toolboxes and navigate to and click New>Toolbox (Fig. 8)
- Give the toolbox an appropriate name
- Right click your new toolbox and navigate to and click
   Add>Script (Fig. 9)

| ld Script                                             |                             | ?      |
|-------------------------------------------------------|-----------------------------|--------|
|                                                       |                             |        |
| Name:                                                 |                             | 1      |
| oupd                                                  |                             |        |
| Label:                                                |                             | -40    |
| Script                                                |                             |        |
| Description:                                          |                             |        |
|                                                       | ه                           |        |
|                                                       |                             |        |
|                                                       |                             |        |
|                                                       | 12                          | 21     |
| Stylesheet:                                           |                             | -      |
|                                                       |                             | 5      |
| Store relative path names<br>Always run in foreground | (instead of absolute paths) |        |
|                                                       | < Back Next >               | Cancel |

- You should have a screen similar to Fig. 10
- You can leave the options as are, though I changed the name to 'ml\_classifier'
- Click Next>

Fig. 10 Screenshot of Toolboxes in Arc Catalog

| Add Script    |                                           |              |                   | 8 23                  |
|---------------|-------------------------------------------|--------------|-------------------|-----------------------|
| Script File:  | and window when                           | executing so | ript              |                       |
| Q Open        | -                                         |              |                   | X                     |
| Look in:      | scripting                                 | *            | G 👌 🖻 [           |                       |
| Recent Places | Name                                      | *            |                   | Date moc<br>15/06/201 |
| Desktop       | <ul> <li>✓</li> <li>File name:</li> </ul> |              | -                 | Open                  |
| 4             | Files of type:                            | All files    | ▼<br>as read-only | Cancel                |
|               |                                           | < Bad        | Next >            | Cancel                |

- On 'Script File:' click the folder option (≧)
- You should have a screen similar to Fig. 11
- Navigate to where you saved your .py file
- Leave the rest of the options as are
- Click Next>

Fig. 11 Adding a script to toolbox

| l Script                                                                                                           |                                                                                                          | ? ×                                     | 5 #the file to be classified                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display Name<br>Image to be o<br>Signature File<br>© Output classif                                                | Data Type<br>lassified Raster Dataset<br>File<br>ied im Raster Dataset                                   |                                         | 7<br>8 #the signature file to use<br>9 sig_path = arcpy.GetParameterAsText(1)<br>10<br>11 #output name of the classified image<br>12 classified = arcpy.GetParameterAsText(2)                                                                                                                 |
| Click any parameter<br>Parameter Property<br>Property<br>Type<br>Direction<br>MultiValue<br>Default<br>Environment | er above to see its properties below.<br>erties<br>Value<br>Required<br>Input<br>Input<br>Output<br>None |                                         | <ul> <li>Enter the details as shown in Fig. 12 maintaining the order as they appear in the .py file</li> <li>ArcGIS parameter labeling starts from o in the order they are entered and labeled in Fig. 12</li> <li>Under 'Parameter Properties' choose 'input' for the 'Direction'</li> </ul> |
| To add a new para<br>name column, dick<br>then edit the Para                                                       | ameter, type the name into an empty r<br>c in the Data Type column to choose a o<br>meter Properties.    | ow in the<br>data type,<br>inish Cancel | <ul> <li>Choose input for the Direction property for all parameters except for the output classified file which must be 'output'</li> <li>Click Finish&gt;</li> <li>Double click your script</li> </ul>                                                                                       |

Fig. 12 Adding a script to toolbox

| f ml_classifier                           |                                     |        |               | x |
|-------------------------------------------|-------------------------------------|--------|---------------|---|
| Image to be classified                    |                                     | ^      | ml_classifier | * |
| 🖕 Signature File                          |                                     |        |               |   |
| <ul> <li>Classification output</li> </ul> |                                     |        |               |   |
|                                           |                                     | ~      |               |   |
|                                           | OK Cancel Environments << Hide Help | י<br>ר | Tool Help     |   |
|                                           |                                     |        |               |   |

Fig. 13 An ml\_classifier tool

- If you have something like Fig. 13 above, your scripting tool is ready for use
- Click on 'Environments...'
  - We did not bother specifying the mask in our script like we did with the command line because that option is eventually provided under the 'Environments...' options
- Run your tool by entering the relevant input in the toolset.
- If you get Fig. 14 after running your tool, you have just successfully built your script. CONGRATULATIONS!!!
- You should equally get a result similar to Fig. 5b



# Recap...

- We have been able to run ArcPy as a Script tool in ArcMap
  - Accessed and run just like the system tools that are installed with ArcGIS 10.
- We have been able to run ArcPy in the Python Window in ArcMap (Fig. 5)
  - Managing to access geo-processing environment settings.

## How else can python be run?

- Stand alone python from an IDE, from the command line, or as a scheduled task
- As geo-processing service in ArcGIS server

# What other modules are available in ArcPy?

- Apart from the spatial analyst module (arcpy.sa) which we have just introduced ArcPy also provide
  - Mapping module (arcpy.mapping)
  - Geostatistical analyst module (arcpy.ga)

# References

\_\_\_\_

- <u>http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/</u> What\_is\_ArcPy/000v00000v7000000/
- http://www.esri.com/library/fliers/pdfs/python-in-arcgis10.pdf
- http://technet.microsoft.com/en-us/scriptcenter/dd940112.aspx
- <u>http://searchwindevelopment.techtarget.com/definition/scripting-language</u>